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Necessary corrections of the mathematical foundation of fracture mechanics  
- the incompatibility of the applied boundary value analysis solution of linear elastic fracture mechanics  

- the incorrect shear stress transformation – the incorrect field stress extrapolation;  - the absence of the “mixed 

mode” fracture criterion as necessary result of the boundary value problem solution;  - the absence of the 

determining strain rate behavior according to molecular deformation kinetics,  and the absence of Limit analysis 

approach for correction and replacement of so called nonlinear fracture mechanics, which wrongly is based on a 

not existent critical energy release rate for each stress type, based on the elastic energy release crack opening 

modes. 
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Abstract 

It is shown, that the applied fracture mechanics textbook crack tip boundary value problem 

solution is identical to the sum of the exact solutions of pure normal stress loading alone, and 

of pure shear stress loading alone, although these two solutions exclude each other and 

cannot apply at the same time. Evidently this is against the existing “mixed mode” failure 

criterion in all acting stresses, which necessarily follows as exact solution of the crack 

boundary value problem.  Further, the applied equations apply for lower order distances to 

the crack tip singularity (2?? orders lower than the crack length) but are wrongly applied to 

any distance up to infinity). By an improper small variables transformation, the pure shear 

crack tip boundary value solution is shown to be not correct. This all delivers, a wrong, 

incompatible, equilibrium system, which does not show possible displacements and does not 

satisfy the crack boundary conditions and failure criterion, thus does not represent linear 

elastic fracture mechanics. As correction, the right exact limit analysis solution is given, 

which, as such, provides the derivation of the  “mixed I-II-mode” fracture criterion, which is 

precisely verified by empirical research. It further is shown that the postulated textbook stress 

function is based on integration of the copied mono-mode stress solutions, without regarding 

right crack-boundary values. The copied mono-mode stress solutions, are shown to be based 

on the Stevenson potentials for flat elliptical cracks. The necessary limit analysis approach 

for failure, as exact calculation method, provides the necessary linear elastic analysis up to 

yield. Linear elastic stress and displacement terms also represent the none vanishing first 

order row expansion terms of virtual work behavior, of any non-linear stress division. This 
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has consequences for assumed non-linear elastic fracture mechanics, which is shown, to be 

replaceable by the linear approach of limit analysis. As example, the critical stress intensity is 

given of a test series with different initial crack lengths, which, in terms of nonlinear fracture 

mechanics, was subject to undeterminable critical J-integral behavior.  

 

1. Introduction  

For a rigorous strength calculation approach, it is necessary to apply limit analysis, which is 

based on virtual work theorems. For a lower bound solution, it then is possible to regard 

linear elastic unloading and reloading behavior up to the failure state. It is shown, that the 

exact boundary value approach leads to a general, mixed mode, fracture criterion, which also 

is shown to be precisely verified by empirical research (see Table 1). Wood e.g. can be 

considered to be a reinforced orthotropic polymer. Regarded is also fracture of the isotropic 

wood matrix, by matrix stresses, up to yield of the reinforcement. Discussed, in the light of 

limit analysis, are the applicability of the fully empirical critical J-integral- and HRR-method 

and the necessary replacement of assumed nonlinear elastic behavior, by limit analysis, based 

e.g. on test results of Bazant (see Fig. 7.1). Comparison is made of the exact solution with the 

general accepted and prescribed textbook equations, which appear to be based on a 

transformation to confocal polar coordinates of the exact elliptical coordinate equations 

which only apply very close to the crack-tip singularity (two?? orders lower than order one) 

and for shear also only for low order small angles. The proof is given, that these accepted 

textbook equations of fracture mechanics violate compatibility conditions and the ultimate 

load criterion, thus don’t represent linear elastic fracture mechanics solutions. This is the case 

because these equations are literal copies of the sum of the exact equations for pure mode I 

and for pure mode II, which cannot act together at the same time. As correction it is shown 

that the exact equations, which regard the boundary conditions along the whole crack length,  

deliver the necessary mixed I-II-mode fracture criterion. It further is shown that lower bound 

limit analysis solutions are necessary for applicability of theory. Description of an increasing 

non-linear loading behavior  is not needed to estimate behavior at the ultimate state. The 

needed essential approach of strain- and damage rate equations of molecular deformation 

kinetics, for a real description of flow and damage behavior, is lacking in textbooks, but is 

available, in a limit analysis format in the first two references. To make application of this 

theory possible, it is necessary to leave the inexistent “non-linear elasticity” approach. This 

also is necessary, because its fundamental starting point of a critical energy release rate 
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criterion for fracture, is shown to only exist, when it is coupled to a critical stress or critical 

stress intensity condition.   

 

2. Limit analysis approach of Fracture mechanics  

The energy approach of Griffith leads for crack growth, to eq.(2.1):  

/g cEG c =      (2.1) 

where σg is the critical mode I tensile stress perpendicular to the flat crack; E, the modulus of 

elasticity; Gc, the critical energy release rate and c, half the crack length.  

The same applies for two-dimensional stresses, leading to:  

( ) ( )2 2 2 2 2 2

1 2cos sin /y xy cG E c      + = + =   (2.2) 

where τxy is the shear stress along the crack plane. When a determining critical Gc or 

J-integral Jc, would exist, then eq.(2.2) wrongly predicts, against measurements, that the 

pure tensile strength (when τxy = 0) and the pure shear strength (when σy = 0) are equal. This 

error already was known in the time of Griffith and it was concluded, that, although there is 

enough energy for failure, the stresses at the failure site have to be high enough for crack 

extension. An ultimate stress criterion is necessary. A critical energy release rate Gc or Jc, 

thus is, as such, not a material property and is not able to predict strength. It only exists in an 

ultimate stress criterion, in all possible acting stresses. Then a compatible critical stress 

intensity for each acting stress type is known, when acting alone. The applied, so called G-

criterion, eq.(2.3), which is eq.(2.2), multiplied by πc, (written as stress intensity factors), is:   

2 2 2

c I IIK K K= +   (2.3) 

what is not right as failure criterion:  

2 2 2

c I IIK K K +   (2.4) 

because eq.(2.3) predicts an equal tension and shear strength. This thus also applies for the 

fundamental fracture mechanics equation (2.5) of:  

2 2 2

/ // ///

' ' 2
c

K K K
G

E E 
= + +  (2.5) 

where E’ = E for plane stress, or E/(1-υ2) for plane strain and μ is the shear modulus. Because 

of the arbitrary assumed energy addition rule as strength criterion, also K/// is simply added by  

eq.(2.5). To correct for inequal tensile and shear strengths eq.(2.5) is replaced by eq.(2.6).  

2 2

/ //

2 2

/ //

1
c c

K K

K K
= +  (2.6) 
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which still is mentioned to be a summation of energies, but is an arbitrary empirical equation 

which, as such, is rejected by the statistical “lack of fit” test, equation 5 of Table 1, as applies 

for all empirical equations. By eq.(2.2) only the uniaxial strengths of tension alone, or of 

shear alone, can be obtained. Necessary for compatibility is a general mixed mode stress 

failure criterion in all possible acting stresses, which, as consequence, determines Gc for each 

acting stress type alone, when all other stresses are taken to be zero. Application of this 

mixed mode failure criterion of wood, eq.(4.13), in e.g. [3], did show, for isotropic materials 

and thus for the isotropic wood matrix (for matrix stresses), that:  

4 2IIC IC IIc IcG G K K= → =   (2.7)  

Measurements show that this difference is higher, due to apparent hardening in the shear test 

and early instability of the tensile test. Fracture of e.g. notched beams did show, that, despite 

dominant shear loading and the start of local shear flow and shear stress redistribution, (far 

away from the fracture site), mode I failure was determining, (See [3], Fig.2.4.4). Again, not 

an energy criterion, thus not an energy release rate or J, but a local tensile stress strength 

criterion, at the crack tip boundary, is determining, what applies the same for any stress 

combination. Thus, contrary to the general assumption is, Gc (or Jc) in eq.(2.2) or eq.(2.5) not 

a determining material property.  

Because the isotropic wood-matrix is determining for initial fracture, linear elastic fracture 

mechanics (LEFM) for matrix stresses, applies for initial fracture of wood. Plastic like 

deformation of the polymeric reinforcement occurs at creases at the crack tip, called fracture 

process zone. This zone of hydrostatic tension also is the location of micro crack and small 

crack multiplication and propagation. Macro yield occurs at the highest elastic stress, which 

occurs at the crack tip boundary, what also is the location of the highest ultimate strain after 

local yield and thus is the location of crack extension. This zone of confined plasticity 

behavior also can be replaced by the equivalent linear elastic ultimate stress division. This is 

similar to the applied linear elastic bending strength diagram of beam theory to represent the 

elastic- full plastic bending compression stress diagram as given in Fig. 2.1. The difference is 

an internal equilibrium system, which, as all initial stresses and initial deformations, does not 

affect the collapse load, according to limit analysis theorems, when original coordinate 

dimensions are retained in the calculation (as always is applied). Thus Fig. 2.1 shows linear 

elastic bending with a bending stress σm with a negligible internal equilibrium system 

according to limit analysis. (For profiles, this leads to a profile factor for σm). This explains 

the linear unloading and linear reloading up to yield and explains why LEFM may apply up 
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to failure by the empirical ultimate uniaxial (tangential) tensile stress at the crack boundary. 

Thus a, at the start, linear elastic loading curve will bend off by a gradual increasing damage 

and plasticity (see Fig.2.2). When next, near the top of the loading curve, the specimen is 

unloaded, this will be a linear elastic unloading line (according to the superposed linear  

 

Figure 2.1. Bending stress diagram    Figure 2.2. Elastic –full plastic behavior  

 

bending stress diagram in Fig. 2.1). When next, reloaded, the curve shows (by the superposed  

same linear bending stress diagram) linear elastic- full plastic behavior. Thus a linear loading 

line, up to plastic yield is possible. And, because by plastic flow and damage, the elastic 

stress is not involved and not changed by that, (according to limit analysis theorems), and 

thus plays no part in the collapse at limit load, it also is possible to choose a reduced stiffness 

of the linear elastic loading line, (the dash-dot line of Fig. 2.2) up to flow, as is applied in the 

Building Codes, based on a chosen total strain. Thus linear behavior up to ultimate state, 

where the normality rule applies at infinitesimal flow, is the basis of limit analysis, and 

therefore of the linear elastic boundary value analysis, of fracture mechanics. This is applied 

in § 4, for the lower bound limit analysis solution. When this solution shows no discontinuity 

of displacements, it is the unique solution and when the ultimate value is confirmed by 

precise measurements, (see § 5) which always can be made to represent the lowest upper 

bound mechanism, the solution also is the exact solution. Fig. 2.2 shows, that possible linear 

elastic behavior up to failure, is a law of nature. This elementary linear elastic approach up to 

failure, is the consequence of application of the virtual work approach of limit analysis. To 

avoid configurational changes, virtual work and virtual displacements should be applied in 

analyses and thus only first expanded of the load, displacements and stress division apply, 

because second and higher order quantities are zero in the virtual limit. For that reason design 

is normally based on the first expanded of a Fourier expansion of the load [4]. For that reason 
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also, elementary beam theory applies for strength calculations of the Building Codes and for 

the compliance method of fracture mechanics ([3] § 6.2) to calculate deflection differences. 

The mean normal stress, the linear bending stress diagram, and parabolic shear stress 

diagram, are the first expanded of a row expansion of any form of the bending stress diagram. 

Thus the linear elastic loading behavior represents the accountable first expanded of any non-

linear loading behavior and non-linear elastic fracture mechanics can and should be replaced 

by the elementary linear elastic approach.  

 

3. Discussion of the J-integral approach  

Path-independent integrals are used in physics to calculate the intensity of a singularity of a 

field quantity without knowing the shape of this field in the vicinity of the singularity. They 

are derived from conservation laws. For the singularity approach of structural materials, the 

J-integral (Rice integral) is applied as estimation or replacement of the energy release rate in 

the fictive non-linear elastic, region. According to the definition, is J, (near a crack 

singularity), the component along the crack-line of a vector integral, having a thinkable 

meaning of a rate of energy-release per unit crack-extension for not oblique and incipient 

self-similar growth of a crack in a (nonlinear) elastic material. Thus questionable for loading 

behavior of wood due to initial oblique crack extension and skipping across fibers. The path-

independency of J can be established only, when the strain energy density of the material is a 

single valued function of strain. However, in a deformation theory of plasticity, (which does 

not apply for structural materials and viscous fluids), or in the fictive nonlinear elasticity 

theory for radial monotonic loading and no unloading, J still can be path-independent, but has 

not the meaning of energy-release rate. It is the total potential-energy difference between two 

identical and identically (monotonically) loaded cracked bodies which differ in crack lengths 

by a differential amount, (what represents a difference in absorbed, instead of released, 

energy). Further, in a flow theory of plasticity (as applies for wood and other structural 

materials as elastic-plastic materials), even under monotonic loading, no path-independence 

is possible and  J  tends to zero as the contour shrinks to the crack tip. The same applies for a 

growing crack in an elastic material. Under arbitrary load histories and at loading over the top 

of the lading curve, J is path-dependent, and even has not any physical meaning. The curved 

loading line and blunting of the top of the loading curve and formation of the fracture zone 

and the main amount of crack growth with crazing and small crack formation in, (and 

outside), the process zone, means unloading and non-proportional plastic deformation. The 
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by a contour integration obtained J integral, in a common elastic-plastic material, is path-

dependent and tends to zero as the contour shrinks to the crack tip, thus does not exist. 

However it does exist in a rigid- perfect plastic material, called “far field J”, and also exists 

(and is equal) as “deformation J” by assumed pure elastic energy, represented by the loading 

diagram of Fig. 3.22 of [8], although elastic energy is not involved in yield. Thus according 

to non-linear fracture mechanics, the same J -value is obtained in a rigid - plastic material and 

a fully elastic material, while it does not exists in a real elastic plastic material and not in an 

elastic material at crack propagation. (Thus not for linear elastic fracture mechanics). The 

analysis clearly is too empirical, based e.g. on the so called Ramberg-Osgood equation, 

which is a power law fitting curve of data which does not represent any theory or material 

property and may represent any equation. The power law is as old as the oldest research in 

the 19th century and it appears not possible to get rid of it. The J approach also is in conflict 

with molecular Deformation Kinetics (reaction rate kinetics) where the rate of change and 

differences in the rate of change are always determining for damage and other processes [2] 

and parameter estimation requires following complex loading-unloading histories.  

The main error of non-linear fracture mechanics is the assumption of existence of critical 

energy release rates for each stress type, which act independently of each other, and thus  

violate compatibility conditions and violate the necessary mixed mode fracture criterion.  

 

4. Exact solution of the “Boundary value problem” of fracture mechanics  

 4.1. Derivation of the so called “mixed I-II mode” fracture criterion  

The analysis of the boundary value problem of fracture mechanics of isotropic material is e.g. 

discussed in ([5], § 8.9-10 and § 10.9). An extension for orthotropic materials, like wood and 

reinforced polymers, see § 5, is derived in [3]. Determining for a solution are the boundary 

conditions along the whole boundary of a crack in an infinite plate and at the far field 

boundary (at infinity). Then, the failure criterion depends on the actual ultimate uniaxial 

tensile stress  at the crack boundary, which is the highest loaded material near or at the crack 

tip. The flat elliptic crack form can be seen as the accountable first expanded of any crack 

form. This form gives the highest stresses for any first expanded load, and thus delivers the 

highest, and thus the most probable, lower bound solution. The followed estimation of 

stresses around a flat elliptic hole, is based on the Airy stress function solution of [6]. This 

was a general accepted method in the past and recent past. See e.g. [7] for the failure criterion 

of concrete, covering the known data at that time. This exact analysis is now applied in rock 
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mechanics [5], and for wood (van der Put, iews.nl). There, the mathematical solution of the 

Airy stress function equation:  

( )2 2 0U  =    (4.1) 

is given in terms of two analytic functions  ϕ(z) and  χ(z), (where z=x+iy), satisfying the  

 

Figure 4.1. Elliptic hole and coordinates [3] 

 

conditions at infinity and at  the whole elliptic crack boundary surface, ξ = ξo, showing no 

discontinuity of displacements, thus being the solution. Thus:

( ) ( )  ( ) ( ) ( ) ( ) 0.5U R z z z z z z z z z     = + = + + +   (4.2) 

The analytical functions (complex potentials) can be taken to be polynomials, or power series 

in 1/z, or Fourier series, all for suitable cases. It will be shown, see § 6.2, that all prescribed 

textbook equations: [8], [9], [10], [11] and [5] are based on the stress potential functions 

eq.(4.3) and eq.(4.4) of [6]. For the analysis of the elliptic crack, it is obvious to use elliptic 

coordinates, e.g. for giving stress boundary conditions along the whole crack boundary ξo  

and for the right crack tangent direction with the highest stress, for the exact solution.  

For the elliptic hole ξ = ξo with semi-axes: a = c cosh(ξo) and b = c sinh(ξo) in an infinite 

region loaded by an uniaxial stress p at infinity, inclined at  β  to the major axis Ox of the 

ellipse, (see Fig. 4.2,  a > b ), the functions  ϕ(z) and χ’(z) = ψ(z) are, for an exact solution:    

( ) ( ) ( ) ( )0 02 2 24 cos(2 )cosh 1 sinhiz pce pc e     += + −    (4.3) 

( ) ( ) ( ) ( )( ) ( )02

0 04 [cosh 2 cos 2 sinh 2 ]cosz pc e i ech
      = − − + − −   (4.4) 

These equations (4.3) and (4.4) satisfy the required conditions at infinity and at the surface: 

ξ =  ξo  of the elliptic hole.  Using dz / dζ = ω’(ζ) = c sinh(ζ), it follows that:  

( ) ( ) ( ) ( )0 02 2 24 ' 4 cos 2 1 cothid d
z pe p e

d dz

   
  



+= = + −    (4.5)  

The tangential stress σt at the crack boundary ξ = ξo  is simply: σt  = ση  because there: σξ = 0, 

as boundary condition (Because the crack is empty there is no pressure and shear on the crack 
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boundary surface) and using eq.(4.5), and because:   

( ) ( )2 ' 'z z     + = +  = ( ) ( )0 02 ' 't i i      = + + − =  

( ) ( ) ( )0 02 2 2

0cos 2 0.5 1 cothipe p e i    += + − + + ( ) ( )02 2

00.5 1 cothip e i   −− − =

( ) ( ) ( ) ( )0
12

0 0cos 2 cosh 2 cos 2 sinh 2pe p
    

−

= + − +    

( ) ( ) ( ) ( ) ( ) ( )0
12

0 0cos 2 sinh 2 sin 2 sin 2 cosh 2 cos 2pe
      

−

− + − =        

( ) ( ) ( ) ( )( )
( ) ( )

0 0

0

sinh 2 cos 2 exp 2 cos 2

cosh 2 cos 2
p

    

 

+ − −
=

−
 , (4.6) 

eq.(4.6) follows and can be extended by combining two stresses at infinity: p2 inclined at β to 

Ox and p1 at  π/2 + β, making any loading combination (σy  τxy) possible, according to:  

( ) ( )2 2

1 2sin cosx p p  = + , ( ) ( )2 2

1 2cos siny p p  = + , ( ) ( )1 20.5 sin 2xy p p = − −  giving:  

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )
0 0 0

0

2 sinh 2 2 [(1 sinh 2 )cot 2 exp 2 cos 2 cos 2 ]

cosh 2 cos 2

y xy

t

ec        


 

+ + − −
=

−
  (4.7) 

For a flat crack, thus for small ξ0 and η (near the crack tip) this is:  

 

Figure 4.2. - Stresses in the notch plane Ox, [3].  

 

( )0

2 2

0

2 y xy

t

  


 

−
=

+
  (4.8) 

The maximal tangential stress follows from dσt /dη = 0. Thus: 

( )2 2

0 02 0xy y     − + =    →    ( )2 2

0 /y y xy xy      =  +
  

.  (4.9) 

Substitutions in eq.(4.8) gives:   

( )2 2

0 t y y xy    =  +   (4.10) 

This equation can be written:  

( ) ( )( )
2

2
2 2 2 2

0 t y y xy y xy      − =  + = + ,   →   
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2

2

0 0

1
( ) / 2

xy y

t t

 

   
+ =   (4.11) 

Transformation from elliptic to confocal polar coordinates, by eq.(6.5) below, gives: 

( )0 02 / cosr c =    
02 /r c    (4.12) 

and substitution in eq.(4.11) gives, for variable c, with constant  σt (ro)
1/2: 

( )

( ) ( )

2
2

2 2
0

0

1
/ 2 2

xyy I II

Ict IIct

cc K K

Kr Kr

  

   
+ = + =    (4.13) 

what is the mixed I-II mode fracture criterion, while eq.(4.11), with constant ξo∙σt thus with  a 

structural constant initial focal distance 2c of clear wood, which for initial sharp flat cracks is 

about equal to the crack length 2a, gives and explains, the uniaxial, ultimate strength criterion 

for clear wood. Because the high value of σt and small value of the crack tip distance ro , are 

not determined by eq.(4.13), only the product σt (ro)
1/2, is obtained. The distance ro from the 

focus of the elliptical crack to the adjacent critical crack tip boundary where crack extension 

proceeds, is small for flat cracks (when  a >> b). Thus the high cohesion strength σt is 

reached, what is possible because of the indefinitely high strength of the 3-dimensional  

hydrostatic stress state at the crack tip. (see paragraph 4.2)  

Besides the crack length, the crack width, is determined by the focus distances. The mode I 

crack tip opening displacement (CTOD) ⸹o, for plane strain, is according to textbooks:  

⸹o = 2(KI)
2/(πσyE).  

This can be written: ⸹o = 2(KI)
2/πσyE = 2(σy)

2(πro/2)/πσyE = ro σy /E = ro εy.  

Thus the CTOD at first yield ⸹o is proportional to ro and thus is very small for flat cracks.   

According to eq.(4.12) is ξo = √(2ro/c) ≈ √(2ro/a) and is, as ellipse, also equal to:  ξo = b/a. 

Thus is: ro =  b2/2a. The radius ρ of the elliptic curvature of the crack tip at x = a is: ρ = b2/a. 

Thus is: ρ = 2 ro, and 2ro in eq.(4.13) can be replaced by ρ, giving the influence of the 

sharpness of the crack tip. Because of this is mentioned in literature that even a small crack 

with a sub-micron tip radius can amplify stresses several hundred times causing structural 

failure under relatively low average stress (despite the high hydrostatic strength).   

According to eq.(4.11) is the highest stress for mode I failure at the crack tip:   

σy = σt·ξo /2 = σt·√(ro/2c) = σt·√( ρ/4a),  

what is identical to the result of the oldest derivation by Inglis in 1913, (also applied by 

Griffith to evaluate his strain energy), because, according to Inglis, is for mode I failure:       

σt  = σy(1+2√(a/ ρ)) ≈ 2 σy√(a/ ρ) for flat cracks. Thus, reversed: σy ≈ σ1√( ρ/4a) the same as 
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the exact result eq.(4.11). The derivation of Inglis for mode I failure is now extended for 

mixed mode failure by eq.(4.13), which is equal to the empirical Wu-equation. Wu noticed a 

crack jumping over fibers, what is identical to fracture propagation at an alternate changing, 

but small, value of (+ and -) δ, which thus is neglected as best value (Thus cos(δ) ≈ 1). As 

shown later, fracture always ends at δ close to zero by failure of the developed remaining 

hydrostatic bonds in the end state.  For clear wood and short rectangular notches however 

oblique crack extension is possible as is measured and what is discussed in [3].   

Eq.(4.13), as exact equation, also follows from the critical distortional energy principle [3], 

thus also applies for initial flow before building up a hydrostatic stress field. 

Notice that no critical energy criterium is possible or required to obtain , , ,I II Ic IIcK K K K .  

 

4.2. Derivation of the hydrostatic stress state for fracture  

Eq.(4.13) shows that fracture mechanics with constant stress intensity:  

0 / 2Ic y c tK c r   = =   (4.14) 

applies when ro and σt are constant. Thus σt  represents the cohesion strength at the crack tip 

craze and 2ro is the invariant radius of the constant dimensions of the, “fracture process zone” 

called craze, at the crack tip. This zone clearly represents a kind of crazing with, as such, an 

invariant size, (which is regarded to be related to a material inhomogenities structure). The, at 

the upper crack tip, also occurring hydrostatic tension as shown by eq.(6.18), for pure mode I 

tensile loading perpendicular to the crack direction, gives:  

/ 2r p c r = =      ( 0xy = )   (4.15) 

This is equal to the third stress σz of triaxiality, due to confined contraction, with ν = 0.5 for 

no volume change as lower bound solution. Thus: 

z r r     = + = =    (4.16)  

This probably shows the start of extension of the process zone independent of the final 

fracture according to eq.(4.14). This means, that, by early yield, the local hydrostatical 

stresses may, as such, be undetermined high, (when r →0), without failure in the isotropic 

wood matrix (lignin with branched hemicellulose). Eq.(4.15) gives the exact property of the 

hydrostatic ultimate stress to be proportional to (ro)
-1/2 at yield. Thus: 

0/ 2t cK r =   (4.17) 

where Kc = constant; ro << c, according to eq.(4.12) because  ξo <<1 for flat cracks. It is thus 

not true, although stated in textbooks, that:  
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2
0, 0

( 2 )limI
r

K r


 
→ =

   (4.18) 

because {σ2·√(2πr)} is independent of r. Thus this limit does not exist. It is the hydrostatic 

stress which explains why the stress may become high when r is small. This is determined by 

the amount of stress spreading by the stress spreading law. See Appendix of [12] for the 

derivation. Finally not eq.(4.15) but eq.(4.14) determines total failure and the failure 

criterion. Early failure, by hydrostatic eq.(4.15), should be visible by an almost  pure 

collinear crack extension. 

Based on the potentials eq.(4.3) and eq.(4.4) all stresses everywhere in the field around the 

crack can be calculated. See Fig. 6.2 for the result. And also the stress transformations are 

known. Because:  

( ) ( )2 ' 'x y z z       + = + = +    (4.19) 

22 ( 2 ) i

y x xyi i e 

       − + = − + = 2[ ''( ) '( )][ '( ) / '( )]z z z     +  (4.20) 

τxy is known from the imaginary part of eq.(4.20) and σy – σx from the real part.  

Thus with eq.(4.19), all stresses are known in Cartesian coordinates. The same is possible for 

transformation to polar coordinates. 

For pure shear loading along the crack, the exact equations, in elliptical coordinates, also 

show the presence of hydrostatic stress at the top of the crack tip as is shown by the following 

derivation. By loading in pure shear, thus by loading by two principal stresses at infinity of p 

at β = π/4 and - p at β =3π/4, the stresses are:  

( )( )( ) ( )2cosh 2 1 sin 2p    = − −    (4.21) 

( )( ) ( )( ) ( )2 cosh 2 1 cosh 2 1 sin 2p      = − − + 
  (4.22) 

( ) ( )( ) ( )2cos 2 1 cos 2 sinh 2p      = − − 
  (4.23) 

where α = 1/[cosh(2ξ) - cos(2η)].-This delivers a hydrostatic stress state when: σξ  =  ση , are 

equal principal stresses, and when, necessarily, also:  τξη = 0. For: σξ  =  ση  is:  

( ) ( ) ( ) ( )2 2 2 2cosh 2 cosh 2         − − + = − − − −     ( )cosh 2
1





→ =

−
 (4.24) 

and for  τξη = 0 is: 

( ) ( )2 2cos 2 cos 2 0    − + =    ( )cos 2
1





→ =

+
   (4.25) 

Substitution of eq.(4.24) and (4.25) into the stress equations (4.21) and (4.22), gives:  
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( )
1 2

sin 2 2
1 2

c
p p p p

r
 


     



+
= = − = −  − = −

+
  (4.26) 

because α = (c/4r) >> 1, where c is half the crack length. The third principal stress is:   

0.5( )z            = + = + = =   (4.27) 

The exact equations (4.19 to 4.21) in elliptical coordinates, thus show, that also at pure shear 

loading along the crack length, a hydrostatic ultimate stress occurs at the crack tip. In the 

limit at the same place and magnitude as for pure mode I loading. This therefore also applies 

for any load combination. According to the critical distortional energy principle this may 

provide an indefinitely high strength to cover the high singularity stress. (For dominating 

tensional loading the sign of p, and thus of α, has to be reversed in this analysis). According 

to eq.(6.7) is:  α = c/4r in polar coordinates. The, in elliptical coordinates derived, hydrostatic 

stress for pure shear loading, is not found when the same derivation is done after 

transformation to confocal polar coordinates of the exact elliptic coordinate equations. The 

reason is that this transformation is not right and only applies for small values of the variables 

thus θ ≈ 0, thus  only for mode I failure. Thus the Textbook equation for pure shear loading is 

not right. This is discussed in § 6.1. As well the original derivation in [5], as the Textbook 

modification in [8], don’t account for the kink ⸹ = θ/2 in Fig. 6.1 and thus their equations 

only can apply for θ = ⸹ = 0. Thus only for mode I failure. The in elliptical coordinates 

derived, hydrostatic stress for pure tensional loading perpendicular to the crack (see eq.(8.219 

to (8.221) of Jaeger et all) for β = π/2, and small values of ξ and η, thus close to crack tip, 

shows indeed: σξ ≈ ση and  τξη ≈ 0 of the hydrostatic stress state,  confirming the small 

variable derivation of § 6.1 for tension perpendicular to the crack direction. The order of the 

stresses σξ and  ση is: p·(2ξ)/(ξ2 + η2), thus one order higher than the order of p, showing the 

peak stresses of fig. 6.2. Besides hydrostatic stress at the crack tip craze, also slip- line 

analysis between and around rows of small cracks, show that also by apparent shear flow, 

hydrostatic normal stress increase occurs due to the stress spreading effect. For local 

compressional loading, the strong increase of strength, due to confined dilation and necessary 

hydrostatical stress state, is generally known. See [12], for the exact derivation by the “slip- 

or shear- line” theory. For compatible displacements, shear lines are straight, or curved 

according to the logarithmic spiral. The strength calculation method, based on this spiral 

stress spreading, was already in the Dutch building code. The orthotropic extension of the 

critical distortional energy principle, as basis for orthotropic hydrostatic stress calculation, is 
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given in [3] Ap. B. High hydrostatic tension also is measured, in materials. Measured is e.g. 

60 atmospheres for tension of water in a glass tube. Crazing, by hydrostatic tension in the 

process zone, is known to be typical for  amorphous material, thus applies for the isotropic 

wood matrix. The derivation shows that this is a general property of fracture.  

 

5. Empirical verification of the mixed I-II mode fracture criterion of wood 

For isotropic material eq.(4.13) predicts that KIIc = 2 KIc. This is e.g. verified for Balsa wood, 

which is elastic orthotropic, but is extremely light, thus has a very low density of 

reinforcement, and thus, the isotropic matrix is determining for the strength showing the 

isotropic strength behavior by KIIc = 2 KIc  as verified by the data of Wu on Balsa  (by 

KIIc ≈ 140 psi.in0.5  and KIc ≈ 60 psi.in0.5; (where KIIc ≥ 2 KIc by some hardening in the mode II 

test, and KIc ≤ KIIc/2  by early instability of the tension test). 

The Wu- equation is generally applicable, also when σy is a compression stress, as verified by 

the measurements. When the compression is high enough to close small notches 

(σy,cl ≈ 2Gxyξo), τxy has to be replaced by the effective shear stress:  

( )*
xy xy y y,cl =  +  − ,  

where μ is the friction coefficient, giving:  

( )
2

*
xyy,cl

2 2
0 t 0 t

1
/ 2


= +
   

,  (5.1) 

 

Figure 5.1. Equation numbers are of the first edition of [3]  

 eq.(2.31) = (5.1);  eq.(2.30) = (4.13) 
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what is fully able to explain fracture by compression perpendicular to the notch plane.  

The stress strain relations for orthotropic stresses in denser wood, can be given by: 

11 12x x yc c  = + ;   12 22y x yc c  = + ;   66xy xyc = .   (5.2) 

 Substitutions of eq.(5.2):  

2 2

11 122 2x

U U
c c

y x


 
= +

 
, …….etc. 

in the compatibility condition: 

 

2 22

2 2

y xyx

y x x y

   
+ =

   
,     (5.3)  

gives:   

( )
4 4 4

22 66 12 114 2 2 4
2 0

U U U
c c c c

x x y y

  
+ + + =

   
  (5.4) 

Wood acts as a reinforced material and can be treated to contain e.g. a shear-reinforcement 

and an additional tensile reinforcement in the main direction. The reinforcement in y-

direction with the same amount in x-direction is accounted to the isotropic matrix.  

Then, for equilibrium of the matrix stresses (expressed in the total stresses) applies:  

 
2

2

1

x U

n y

 
=


;   

2

2y

U

x



=


;    
2

6

xy U

n x y

 
= −

 
,   (5.5) 

Inserted in the compatibility equation, eq.(5.3), this should give the isotropic Airy tress 

function. But the same compatibility should apply for matrix and reinforcement. Thus 

inserting the total stresses in eq.(5.3) should give a proportional result, given by eq.(5.6):   

( )
4 4 4

22 6 66 1 12 1 114 2 2 4
(1 ) 0

U U U
c n c n c n c

x x y y

  
+ + + + =

   
    (5.6) 

For the isotropic matrix thus is:  

1 11 22/ 1n c c = ;    ( )6 66 1 12 22( 1 ) / 2n c n c c+ + = ,  

giving:  

4 4 4
2 2

4 2 2 4
2 ( ) 0

U U U
U

x x y y

  
+ + =   =

   
       →   (5.6) 

22
1

11

x

y

Ec
n

c E
= = ;      ( )12 12 22

6 21 12

22 11 66

2 2
xy

y

Gc c c
n

c c c E
 

 
= − −  = + +  
 

   (5.7)  

This orthotropic-isotropic transformation of the Airy stress function in the elastic state of the 

reinforcement and the calculation method based on the stresses of the matrix makes it 
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possible to use the isotropic solutions of U to find the matrix stresses (which should not 

surmount the matrix strength). In this way eq.(4.13) becomes in total orthotropic stresses: 

( )

( )

22 2
y y IIiso ort I

2 2 2 2 2 2
0 t 0 t Ic0 t 0 t 6 IIc

KK
1

/ 2 / 2 Kn K

  
= + = + = +
      

  (5.8) 

and it follows that: 

IIc 0 t 6
6

Ic 0 t

K n
2n

K / 2

 
= =
 

  (5.9) 

( )6 21 122 2 2 /xy yn G E = + +  =   (5.10) 

= 2(2 + 0.57)/0.67 = 7.7 for Spruce and: 2(2 + 0.48)/0.64 = 7.7 for Douglas Fir in TL-

direction, according to data of [11]. This is, in this chosen example, independent of the 

densities of respectively 0.37 and 0.50 at a moisture content of 12 %. Thus, for KIc ≈ 

265 kN/m1.5, is KIIc = 7.7x265 = 2041 kN/m1.5
  in TL-direction. In RL-direction this factor is 

3.3 to 4.4. Thus, when KIIc  is the same as in the TL-direction, the strength in RL-direction is 

predicted to be a factor 1.7 to 2.3 higher, with respect to the TL-direction. This however 

applies at high crack velocities (“elastic” failure) and is also dependent on the site of the 

notch. At common loading rates a factor lower than 410/260 = 1.6 is measured and at still 

lower cracking speeds, this strength factor is expected to be about 1 when fracture is in the 

“isotropic” middle lamella. It then thus is independent of the TL and RL-direction according 

to the local stiffness and rigidity values. To know the mean influence, it is necessary to 

analyze fracture strength data dependent on the density and the elastic constants of n6. From 

the rate dependency of the strength follows an influence of viscous and viscoelastic 

processes. This has to be analyzed by Deformation Kinetics theory, see [2].    

 

Table 1. - Lack of fit values for supposed failure criteria  [13]   

Failure criterion p-

value  

/ 1I IcK K =   0.0001  

/ / 1I Ic II IIcK K K K+ =  0.0001  

( )
2

/ / 1I Ic II IIcK K K K+ =  0.5629 

( )
2

/ / 1I Ic II IIcK K K K+ =  0.0784 

( ) ( )
2 2

/ / 1I Ic II IIcK K K K+ =  0.0001  
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Empirical verification of the above derived theory equation, eq.(5.8), which is a Coulomb 

equation, often called Wu-equation for wood, is not only obtained by Wu, [14], but also by 

tests of Mall et al [13] done at the TL-system on eastern red spruce at normal climate 

conditions using different kinds of test specimens. The usual finite element simulations 

provided the geometric correction factors, and the stress intensity factors. The lack of fit test 

was performed on these data, at the for wood usual variability, assuming the five different, 

often suggested empirical failure equations of Table 1. The statistical lack of fit values in the 

table show, that only the Wu-failure criterion, the third equation of Table 1, cannot be 

rejected due to lack of fit. This does not apply for the precise empirical fits by the other 

equations and that is the reason why this lack of fit test never is performed by empirics.   

The Wu-equation is shown to fit also clear wood and timber strength data in [1], [15] and [3], 

as to be expected from theory.  

 

6. Comparison of the exact solution with the applied textbook equations. 

6.1. Transformation to confocal coordinates of the elliptic equations 

The general accepted textbook analysis method (see Appendix of [8]) is based on crack tip 

singularity equations, very close to the crack tip singularity, and not on the boundary value 

approach along  the whole crack length of § 4. These singularity equations, given in [5] – 

§8.10, are also based on the Airy stress function solution of Stevenson [6], but simplified to 

only apply at very small, lower order distances r to the crack tip. It will be shown, in the 

following, that also only lower order values of θ  apply. However, due to the applied 

modification of (Appendix 2 of Anderson [8]) they are wrongly also applied for higher order 

distances and any rotation. To diminish the distortion of the equations at higher values of θ, 

all textbooks wrongly removed the kink between radius r and the normal in Fig. 6.1, taking 

the lower ⸹ = θ, and the upper ⸹ = 0.  Further, the textbook expressions, also wrongly, are 

split into two independent loading cases. One for normal stress loading perpendicular to the 

crack direction alone, and the other for shear stress loading along the crack direction alone. 

Although these solutions exclude each other and cannot apply at the same time, they are put 

together as one solution, as if they are coherent loading components. This assumption clearly 

is based on an old believe in the existence of independent separate failure modes. The general 

mixed mode solution of this boundary value problem shows however that this incompatible 

solution can not be right. The modes act, alone, as special loading cases of the general mixed 
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mode failure case. The right singularity equations of [5] – §8.10, will be discussed and 

extended in the following. The stresses outside the crack boundary also follow from the 

solution of the Airy stress function of § 4.2. 

For a point near the elliptic crack tip:  ξ = ξo , with coordinates:     

( ) ( )cosh cos ,x c  =    ( ) ( )sinh siny c  = ,  (6.1) 

with the focus x = c of the flat ellipse as new origin for Cartesian coordinates X, Y, (see Fig. 

6.1) which are for small values of ξ and η:   

  

Figure 6.1.- Confocal polar coordinates for transformation of the elliptical crack coordinates 

  to polar crack tip coordinates. 

 

( )2 2 / 2X x c c  = − = − ,     Y y c= =   (6.2) 

what is, in polar coordinates:  

2 2r X Y= + ,   ( )cos ,X r =    ( )sin ,Y r =   (6.3)  

From (6.2) follows:  

( )
1/2

2 2 2 22 / 2 /X Y c r c + = + =   (6.4) 

And from (6.2) and (6.4) follows for the elliptic coordinates:  

( ) ( )( ) ( ) ( )
1/21/2 1/2

/ 1 cos / cos / 2r c r c  = + =   (6.5)  

( ) ( )( ) ( ) ( )
1/21/2 1/2

/ 1 cos / sin / 2r c r c  = − =    (6.6)  

The quantity α of eq.(4.6) and (4.7) becomes:  

( ) ( )( )
1

cosh 2 cos 2  
−

= − = ( )
1

2 20.5 / 4c r 
−

+ =   (6.7) 

The angle δ follows by:  

( ) ( ) ( )( ) ( )( ) ( ) ( )2 ' / ' sinh / sinh /i ie i i i i e            = = + − = + − =   (6.8) 
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or:   δ = θ/2    (6.9) 

Using this, but ignoring eq.(6.9), is:  

( ) ( ) ( )
2 2

2 2
2 ' ' 4 'x y

U U
z z R z

x y
    

 
 + = + = + =     

,   (6.10) 

what is, for the flat crack 
0 0 = , for loading by stress p at infinity at an angle β to the crack, 

using the small values properties:   

r  + = ( ) ( )( ) ( ) ( ) ( )cos 2 1 cos 2 sinh 2 sin 2 sin 2p p         + = + − −  =   

( ) ( )( )( ) ( ) ( )cos 2 1 cos 2 2 2 sin 2p p      = + − − =    

( ) ( ) ( )( ) ( ) ( ) ( )
1/2

cos 2 / 2 1 cos 2 cos / 2 sin 2 sin / 2p p c r     = + − − 
  (6.11) 

The first term is constant and regarded to be negligible with respect to the term in ( r) – 1/2 . 

This means that √(c/r) is of a higher order and thus r is two orders smaller than half the crack 

length c. It is important to notice the small allowable value of r, which is (r < 2c/100), thus 

1/100 times the crack length 2c. This is not noticed and not applied in practice and stresses 

are regarded to be of the same order of p.  

Stresses are known from equivalent derivatives of the whole crack boundary problem 

solution, discussed at § 4.  It applies that:  

( ) ( ) ( ) 
2

0.5 '' '' '' ''xy

U
i z z iz i z i z

x y
    


= − = − − + −

 
  (6.12) 

( ) ( ) 
2 2 2

2 2
2 2 2 '' ''y x xy

U U U
i i z z z

x y x y
    

  
− + = − − = +

   
  (6.13) 

( ) ( ) ( )
2 2

2 2
2 ' ' 4 'x y

U U
z z R z

x y
    

 
 + = + = + =     

,  (6.14)  

what leads, similar to eq.(6.11), after transformation to confocal polar coordinates, to:   

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
1/2

2 2 2 28 / ( ) sin / 2 1 3sin / 2 sin 2 2cos / 2 1 sin / 2 sinrr cp       =  − +  +   (6.15) 

( ) ( ) ( ) ( ) ( ) ( )
1/2

2 2 2 28 / ( ) 3sin / 2 cos / 2 sin 2 2cos / 2 sinr cp      = −   +    (6.16) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
1/2

2 2 2 28 / ( ) cos / 2 3cos / 2 2 sin 2 2cos / 2 sin / 2 sinrr cp       =  −  +    (6.17) 

For the common mode I test with collinear crack propagation is: β = π /2  and  θ = 0.  

Then is: (8r/(cp2))1/2σr = 2  and   (8r/(cp2))1/2σθ = 2 ,   and   τrθ = 0.   Thus is:   

/ 2r p c r = = . (6.18) 

showing, by the equal principal stresses and zero shear stress, the local hydrostatic tension. 
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Thus an undetermined high stress is possible. This is discussed at eq

In general, for pure mode I, thus β = π/2, follows: 

( ) ( ) ( )( )
1/2 22 / cos / 2 1 sin / 2rr c p  =  +  (6.19) 

( ) ( )
1/2 32 / cos / 2r c p =   (6.20) 

( ) ( ) ( )
1/2 22 / cos / 2 sin / 2rr c p  =  (6.21) 

There is an extreme ∂σθ /∂θ = 0, giving:  

( ) ( ) ( )
1/2 22 / / (3 / 2) cos / 2 sin / 2 0r c p     = −  = ,  →   θ = 0  (6.22) 

Thus the extreme stress is the hydrostatic stress at r = ro:  

02tp c r  =   (6.23) 

Thus, as confirmed in the following derivation, also θ is a lower order small variable, close to 

zero, just like  r, where  ro  the minimum value of r, is the distance from the focus to the 

crack boundary where fracture proceeds. The transformation gives the transformation to r and 

θ of polar coordinates of the elliptical crack boundary, but for the increasing rotation with δ = 

θ/2 (according to eq.(6.5)), it follows from Fig.6.1 that:  

( )
( )

0

0

/( / 2) sin( / 2
( ) ( / 2) lnsin( / 2)

( / 2) 2 2 / sin( / 2)

d r rrd d dr d
tg tg d

dr tg r r r





  
  

 

=

=

= = → = = = = =  

= 
1/2

0 0(1/ 2) ln( / ) ln( / )d r r d r r = = =    ( )( ) 0 1ln sin / 2 ln /r r C =→ = + →  

( ) 1

0sin / 2 / Cr r e =→ =     1 1

0 0sin( / 2) 1 2 / / 2C Cc r e e r c  = =→ = =  → = →    (6.24) 

because for θ = π, is r = 2c, the total crack length. It thus follows that then:  

( )sin / 2 / 2r c =   (6.25) 

But, because r << 2c, also θ has to be very small, close to θ = 0, for a right applicable value. 

This is satisfied for mode I, thus for pure tension perpendicular to the crack, but not for pure 

shear along the crack.  

The loading case, for pure shear S, follows from eq.(6.15 to 6.17) by the combination of two 

stresses of p = S at β = π/4 with p = - S at β = 3π/4  giving: 

( ) ( ) ( )( )
1/2 22 / sin / 2 1 3sin / 2rr c S  =  −  (6.26) 

( ) ( ) ( )
1/2 22 / 3 sin / 2 cos / 2r c S  = −   (6.27) 

( ) ( ) ( )( )
1/2 22 / cos / 2 3cos / 2 2rr c S  =  −   (6.28) 

As small variables solution, thus at  θ = 0, is:  
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2 2r tr S c r    = =  

This satisfies the failure criterion eq.(4.13) for pure shear failure. However it is a trivial 

solution because the other 2 stresses are zero. And for θ = π,  no anti-symmetric solution is    

satisfied because then:  σr = - 2S√(c/2r),   σθ = 0, and  τrθ = 0. But, at the crack-boundary, σθ is 

never zero and σr  is mostly zero or equal to σθ at the crack tip. 

According to the exact approach of § 4, applies for initial failure by the ultimate tensile stress 

at the crack boundary:  σr = τrθ = 0 and  σθ = σt . This is the case for eq.(6.26) to eq.(6.28) at  θ 

= 350, what is not a small value of θ close to zero. Thus the small variable solution, by this 

crack tip strength model, is not able to give the extreme values and is not able to satisfy 

eq.(6.9) for θ ≠ 0. All results further apply only for infinite long cracks because r << c. The 

equations are nevertheless applied by Textbooks for much higher values of even:  r >> 2c, 

going to infinity. Clearly the small variables crack tip singularity approach is not a general 

approach  and should not be used anymore and be removed from Textbooks. Only the 

Stevenson, crack boundary value solution, along the whole crack length, remains as only 

right solution, covering also the whole field around the crack. See Fig. 6.2 for the right 

stresses and [5] for the most extended description.  

 

6.2. Proof of the identity of the textbook- and transformed exact equations  

An extended proof is given because, for a scientific proof, all steps of a derivation have to be 

directly understandable for the reader, or else, reference to such a derivation has to be given. 

In textbooks, only stresses near the crack-tip, as singularity, are regarded. The solution of the 

so simplified boundary value problem is further based on the arbitrary believe (Irwin) that the 

sum of 3 separate, independently acting, fracture modes are determining for strength 

behavior. This is e.g. given in [10] and [8] - Appendix 2, whereto  most textbooks refer, as 

e.g. [9] and RILEM state of the art report [11].  

The exact boundary value solution, based on complex potentials of Stevenson [6], which as 

elliptic type differential equation, applies for equilibrium problems, is given in elliptic 

coordinates, making it easy to give the necessary stress boundary condition along the whole 

flat elliptic crack boundary. The solution gives the mixed I-II mode fracture criterion (e.g. for 

wood) which, when given in polar or Cartesian coordinates, is a simple expression, eq.(4.13), 

for the determining two dimensional problem of a flat crack. It is shown, by the derivation 

below, that the generalized transformation, from elliptical, to confocal polar coordinates, for 

pure mode I loading, eq.(6.19) to eq.(6.21) and for pure mode II loading, eq.(6.26) to 
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eq.(6.28), are taken together, in one equation, as if interaction is possible of these two, each 

excluding, pure mode solutions. Thus the exact solution for mode I loading alone, when the 

shear loading is zero, is combined with the exact solution for shear loading alone, when the 

tensile loading is zero, what means that a not compatible equilibrium system is regarded for 

low enough stresses near the crack tip singularity. This solution, satisfying no crack boundary 

and failure conditions can not be regarded as a lower bound solution of limit analysis and 

certainly not as a linear elastic fracture mechanics solution. The incompatibility, which 

follows from the mixed mode solution, can be shown by calculating the displacements, which 

will show impossibilities and no continuity. The compatibility of the exact (mixed mode) 

solution of §4, is confirmed in the past [5] by calculation of displacements.    

For pure mode I loading p, perpendicular to the crack, when shear stress s = 0, the equations 

(6.19) to (6.21), in p, apply. For pure mode II shear loading along the crack, when mode I 

tensile stress loading p = 0, the confocal coordinate equations (6.26) to (6.28) in S apply.   

In appendix 2 of textbook [8], the following, still applied, equations of Williams [16], are 

given for pure mode I, p1, when the shear stress loading s1 = 0:   

( ) ( ) ( ) 11/ 4 5cos / 2 cos 3 / 2rr r p   = − +    (6.29)  

( ) ( ) ( ) 11/ 4 3cos / 2 cos 3 / 2r p   = − −    (6.30)  

( ) ( ) ( ) 11/ 4 sin / 2 sin 3 / 2r r p   = − −   (6.31)  

and for pure mode II, when p1 = 0: 

( ) ( ) ( ) 11/ 4 5sin / 2 3sin 3 / 2rr r s   = − +    (6.32)  

( ) ( ) ( ) 11/ 4 3sin / 2 3sin 3 / 2r s   = − −     (6.33)  

( ) ( ) ( ) 11/ 4 cos / 2 3cos 3 / 2r r s   = +    (6.34)  

Using the properties: 

( ) ( ) ( )3sin 3 3sin 4sinz z z= −        →     ( ) ( ) ( ) ( ) ( )3sin 3 / 4 sin 1/ 4 sin 3z z z= −   

( ) ( ) ( )3cos 3 3cos 4cosz z z= − +     →     ( ) ( ) ( ) ( ) ( )3cos 3 / 4 cos 1/ 4 cos 3z z z= +   

equation (6.26) for pure shear loading s becomes:  

( ) ( )( )2/ 2 sin / 2 1 3sin / 2r s c r  =   −   ( ) ( )3/ 2 [sin / 2 3sin / 2 ]s c r  =  − =    

( ) ( ) ( ) ( ) ( )/ 2 [sin / 2 3{ 3 / 4 sin / 2 1/ 4 sin 3 / 2 }]s c r   =  − − =      

( ) ( ) ( ) ( )/ 2 [ 5 / 4 sin / 2 3 / 4 sin 3 / 2 ]s c r  =  − +  

which is identical to the prescribed textbook [8] equation (6.32):  
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( ) ( ) ( ) 11/ 4 5sin / 2 3sin 3 / 2rr r s   = − +  , 

when:  s1 = s√(c/2). The same also follows for eq.(6.27):  

( ) ( )23 / 2 sin / 2 cos / 2s c r  = −     ( ) ( )23 / 2 sin / 2 [1 sin / 2 ]s c r  = −   − =  

( ) ( )33 / 2 [sin / 2 sin / 2 ]s c r  = −  − =

( ) ( ) ( ) ( ) ( )3 / 2 [sin / 2 { 3 / 4 sin / 2 1/ 4 sin 3 / 2 }]s c r   = −  − − =  

( ) ( ) ( )3 / 4 / 2 [sin / 2 sin 3 / 2 ]s c r  = − +  

which is, again with: s1 = s√(c/2), identical to the prescribed textbook equation (6.33):  

( ) ( ) ( ) 11/ 4 3sin / 2 3sin 3 / 2r s   = − −    

This same applies for: equation (6.28),  

( ) ( )( )2/ 2 cos / 2 3cos / 2 2r s c r  =   −   ( ) ( )( )3/ 2 3cos / 2 2cos / 2s c r  =  − =  

( ) ( ) ( )( )/ 2 (3 / 4)cos 3 / 2 (9 / 4)cos / 2 2cos / 2s c r   =  + − =  

( ) ( )( )( / 4) / 2 3cos 3 / 2 cos / 2s c r  =  +  

which is, again with: s1 = s√(c/2), identical to the prescribed textbook equation: (6.34): 

( ) ( ) ( ) 11/ 4 cos / 2 3cos 3 / 2r r s   = +   

The same can be done for the equations for pure mode I loading, e.g. equation (6.19): 

( ) ( )( )2/ 2 cos / 2 1 sin / 2r p c r  =   + =   

( ) ( )( ) ( ) ( )( )2 3/ 2 cos / 2 1 1 cos / 2 / 2 2cos / 2 cos / 2p c r p c r   =   + − =  − =  

( ) ( ) ( ) ( ) ( )( )/ 2 2cos / 2 { 1/ 4 cos 3 / 2 3 / 4 cos / 2 }p c r   =  − + =  

( ) ( ) ( ) ( )( ) ( ) ( )( )/ 2 5 / 4 cos / 2 1/ 4 cos 3 / 2 ( / 4) / 2 5cos / 2 cos 3 / 2p c r p c r   =  − =  −   

which is (6.29) and can be done for: eq.(6.20):  

( )3/ 2 cos / 2p c r =  ( ) ( )( / 4) / 2 [cos 3 / 2 3cos / 2 ]p c r  =  +           =  (6.30) 

which is (6.30) and what also can be done for: eq.(6.21), which is identical to eq.(6.31):  

( ) ( )2/ 2 cos / 2 sin / 2r p c r  =  =

( ) ( ) ( ) ( )2 3/ 2 (1 sin / 2 )sin / 2 / 2 {sin / 2 sin / 2 }p c r p c r   =  − =  − =  

( ) ( ) ( ) ( ) ( )( / 4) / 2 [4sin / 2 {3sin / 2 sin 3 / 2 }] ( / 4) / 2 [sin / 2 sin 3 / 2 ]p c r p c r    =  − − =  +  

Thus the general applied equations of [16], for pure mode I and pure mode II, which are 

identical to the confocal coordinate transformations of the exact elliptical coordinate 

equations, based on [6], published now in [5], chapter 8 and § 10.9), are given as mixed mode 

equations (6.35) to (6.37) in the textbooks:   
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( ) ( ) ( )  ( ) ( ) 1 11/ 4 [ 5cos / 2 cos 3 / 2 5sin / 2 3sin 3 / 2 ]rr r p s    = − + + − +  (6.35) 

( ) ( ) ( )  ( ) ( ) 1 11/ 4 [ 3cos / 2 cos 3 / 2 3sin / 2 3sin 3 / 2 ]r p s    = − − + − −   (6.36) 

( ) ( ) ( )  ( ) ( ) 1 11/ 4 [ sin / 2 sin 3 / 2 cos / 2 3cos 3 / 2 ]r r p s    = − − + +   (6.37) 

although terms with p1 only apply when s1 = 0 and terms with s1 only apply when p1 = 0.  

Probably to hide the small variable origin of the equations, given in § 6.1, showing r << c, the 

replacements: p1 = p√(c/2), and s1 = s√(c/2) are made, what is against dimensional rules and 

transformation equations eq.(6.5) and eq.(6.6).  Thus first c is omitted, by the shortcuts p1, s1, 

for p√(c/2) and s√(c/2) in order to escape the necessity r << c and later c is again introduced 

as stress intensity what is based on dimensional analysis rules, with now the suggestion that it 

therefore is possible to apply r >> c. This close to cheating is of course not right. For 

dimensional reasons it is also not allowed to omit c from the copied equations at the start. 

This also applies for the stress function. Following the textbook derivation, the associated 

compatibility equation and stress equations are found by the most simple integration:  

( )2 0rr   + = →  2 2 0  =   →    (6.38) 

2

2 2

1 1
rr

r r r




  
= +

 
   (6.39) 
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( ) 1/23 / 4 r F−=    (6.40) 
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
  (6.41) 

and the stress function is based on the copied σθθ. stress solution:   

( )3/2r F  =   (6.42) 

because:  Ф = (4/3)r2σθθ.  (6.43) 

Expressed in far field loading p1 and s1, the assumed stress function therefore is:  

( ) ( )  ( ) ( ) 3/2

1 1cos / 2 (1/ 3)cos 3 / 2 sin / 2 sin 3 / 2r p s     = − − + − −    (6.44) 

In [10] also, in principle, the same form as eq.(6.42) is chosen for the stress function based on 

literally the same stress equations eq.(6.35) to (6.37) as in other textbooks, see e.g. [8]. The 

equations only apply at lower order distances from the crack-tip. Real occurring field stresses 

around the crack, which should be regarded, are given in Fig. 6.2. 
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Fig. 6.2. Stresses for an  elliptic flat crack [5] of length 2c, according to the solution of § 4. 

 

The simple integration result, leads to the wrong textbook conclusion that stresses along the 

crack are zero. However, in eq.(6.35) to eq.(6.37) is σrr not zero at θ = π, but, because the 

crack is empty, σrr has to be zero, just as τrθ, as boundary condition. Instead the tangential 

stress σθθ is zero, although this stress never is zero at any loading condition. For tension p 

perpendicular to the crack, the “bending” stress at the middle of the crack boundary is also p  

according to high-beam theory. See Fig. 6.2 of the exact solution. But the stress is maximal 

and even tends to infinite at the tip of a mathematical flat crack.. Clearly the simplified 

textbook approach is unacceptable mainly because r should be 2 orders smaller than the crack 

length 2c while it also is applied for much higher distances than the crack length. This has to 

be corrected to the common variable approach in line with  § 4. Also the arbitrary extension 

in [8] of the stress equations with another constant stress at infinity (outside the stress 

function) and the applied stresses with positive power of r, thus infinite high “far field” 

stresses, are not allowed.  

 

7. Linear elastic replacement of so-called non-linear fracture mechanics 

7.1. Replacement of non-linear by linear reloading  

Nonlinear fracture mechanic is empirical, based on the Ramberg-Osgood equation, which is a 

power law fitting curve of data. The line may represent any mathematical function which is 

adapted to follow the tangent direction of the line of the data. Chosen is some power 
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expression of J as energy release rate. The derivation and discussion of  power law equations 

in general is e.g. given in [3]-§4.6, or extended in [17]-§2.5.2. For a right fracture application, 

a damage rate equation is necessary and in the power form, the power has the meaning of the 

activation volume parameter of the molecular Deformation Kinetics equation [2], which 

should be followed for the right approach to find the activation energy and entropy. Because 

not a critical energy release rate, but a critical stress intensity condition determines the  

ultimate load condition data should fit to eq.(7.1) which is given in Fig. 7.1, following [18]. 

The interpretation of this fracture strength data-line of geometrically similar specimens of 

Bazant, [18], was, to regard the inclined line, with a slope of - ½, to represent LEFM theory, 

the horizontal line to be the ultimate stress, strength theory and the curved, connecting line, to 

represent nonlinear fracture mechanics behavior, see e.g. [9]. However, there is no difference 

between nonlinear and linear elastic fracture mechanics data interpretation according to limit 

analysis. For both  the linear elastic - full plastic approach of limit analysis should apply. The 

elastic - full- plastic boundary given in Fig. 2.2, exists as failure criterion, by a single curve in 

stress space which is given by Fig. 7.1. In this figure of e.g. [9], is d/do, the ratio of specimen 

size d, to the constant fracture process zone size do. But, because the line is the result of 

volume effect tests, the initial crack length is proportional to the test-specimen length. Thus, 

d /d0, also can be regarded to be the ratio: initial open crack length, to the process zone size.  

The curved data line of Fig. 7.1, follows the equation:  

    (7.1)  

as result of a power law curve fitting. Eq.(7.1) therefore is:   

  →     (7.2)  

( )0 0c cd d d K   → + = =    (7.3) 

in accordance with eq.(4.14). This confirms that the curve represents the stress intensity as 

ultimate state with Kc as critical  stress intensity factor as should be for the linear state when  

d/do >>1. For these higher values, the curved line approaches the drawn straight tangent line 

 ( ) ( )0 0ln 0.5ln '/d d= − ( ) ( )0 0ln 0.5ln /d d −  (7.4) 

 with the necessary slope of the curve:  

   (7.5) 

as limit. The real slope however is:  

( )0 0ln ln 0.5ln 1 /d d = − +

0.5 0.5

0 0

0 0 0
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d d d
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   (7.6) 

  

Figure 7.1.  Limit LEFM behavior, depending on the crack-length d to process zone do ratio  

showing no nonlinearity. Thus a HRR-analog is not relevant. Data of Bazant [18].   

 

This slope is: – 0.5 for  d >> do and this slope is zero when d = 0. Eq.(7.6) shows that for the  

whole curve LEFM applies and it is an indication that, at zero open crack dimensions, thus  

for: d = 0, the clear wood ultimate stress theory still follows LEFM, because it applies also 

for the constant initial length do (e.g. the constant fracture process zone length).  

The derivation shows that for limit analysis extrapolation of linearity to the ultimate state, in 

accordance with the ultimate linear unloading – reloading behavior, the crack length, which 

is the focus distance of the elliptical first expanded of any crack form, is about equal to the 

open crack length for long sharp (flat) cracks, but is in general equal to:  d’ = d + do  thus 

equal to the open crack length plus the length do  of the fracture process zone. Also in linear 

non-linear fracture mechanics this is applied.     

After first yield drop, to half way unloading, maximal stress spreading is reached, and the 

strength theory further applies, according to [3], chapter 11, for further unloading by crack 

extension. Similar to steel, where yield drop is due to dislocation multiplication and 

dislocation breakaway, applies for wood, that the start of yield drop is due to micro-crack 

multiplication (e.g. as fracture process zone do) and micro- crack propagation and merging 

[3]. The, in § 4 derived, Wu-equation eq.(4.13), then reduces to eq.(4.14), expressed in 

stresses instead of in stress intensities and, with τu =2σt  for isotropic matrix stresses, turns to 

the failure criterion of strength theory for clear wood eq.(7.7), when total stresses, including 

the reinforcement, are accounted. 

 (7.7) 
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It thus follows, that the general accepted application of the nonlinear fracture mechanics 

models, to explain eq.(7.4), don’t hold. The critical stress intensity only, is determining. Thus  

the ultimate tangential tensile strength of the crack boundary at the focus-crack boundary 

distance: r = ro , is in all cases determining. 

The application of geometrically similar specimens shows that there is no volume effect of 

the strength when sharp cracks are determining for failure because the same volume of the 

fracture process zone is determining. The proof and derivation of this and a wider and a total 

beam volume effect is derived in [3] at the discussion of the strength of wide angle notched 

beams.  

 

7.2 Replacement of the large scale yielding J-R curve by LEFM critical 

stress intensity  

It is not true, that total fracture always is instable, as is regarded for wood in textbooks e.g. in 

[8], or [9]. When the testing equipment with specimen is stiff enough, instable equilibrium is 

possible, making it possible to measure yield drop, the unloading behavior over the top of the 

loading curve. This unloading range, called “Griffith locus” [5] gives necessary information 

about the fracture processes in the ligament [3]. This behavior can be explained by void 

formation and void coalescence and necking action between remaining voids increasing the 

local  strength by the stress spreading effect with hydrostatic stress formation as explained by 

“slip”-line theory [3]. In [19] this yield drop is extensively measured for wood. This 

explanation of the unloading behavior leads to a new theory of small crack extension with 

crack merging and stress spreading effect, [12], [3]. Figure 7.2 shows early instability and 

thus no yield drop. All tests of all series did show fracture at 2 mm crack extension, 

indicating instability of the test equipment at that point. The curved part of the loading line of 

Fig. 7.1 and 7.2, need not to mean influence of plastic flow. Here it is explained by LEFM as 

small crack propagation. Figure 7.2, given in [8], is regarded to be an example of so called, 

large scale yielding, where presence of excessive plasticity is assumed and where K, J or 

CTOD, are assumed to also depend on size and geometry of the test specimen. However this 

last plays no role in this case because identical test specimens are used in all tests of Fig. 7.2 

and the, in this case necessary applied JD, the deformation J, has the form:  
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FIGURE 7.2  JR in kN/m   
Effect of crack length/specimen width ratio on J-R curves for HY130 steel single-edge-notched bend (SE(B)) 

specimens. Taken from Towers, O.L. and Garwood, S.J., ‘‘Influence of Crack Depth on Resistance Curves for 

Three-Point Bend Specimens in HY130.’’ ASTM STP 905, American Society for Testing and Materials, 

Philadelphia, PA, 1986, pp. 454–484. 

 

00.73 0.73DJ b W =  =     (7.8)  

[8], where W and Ω are the same in all tests and where the actual stress on the ligament 

length b is replaced by the nominal stress on width W. The contour integral along the crack 

tip boundary is, at plastic deformation, given as: 

0
yy ysJ d



   = =    (7.9) 

which is the comparable with  equation of the crack tip opening displacement model, applied 

for small scale yielding and the linear elastic case.  

uJ m =    (7.10) 

In this equation, m is a constant, which is the same for all series of same test specimens of 

Fig. 7.2, σu is the strength, and δ is the crack opening displacement, which also can be  

regarded the same at fracture for the series, because all specimens did show the same crack 

extension of 2 mm, when loaded from zero to the failure state and thus should show the same 

crack opening displacement over this equal range. It thus is probable that the ordinate J-

values, at the abscissa at 2.0 mm crack extension, are proportional to the σu values according 

to eq.(7.10). All  initial crack lengths are increased by 2 mm at failure. Thus a/W is increased  
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Table 2. – Critical stress intensity at supposed large scale yielding 

          Crack lengrh a/W       Stress and stress intensity 

group mean added total stress reduced KIc  

0.09 -

0.11 

0.100 0.039 0.139 7.3 cm  377.6∙√0.139 = 

140.8 

0.18 -

0.23 

0.205     “ 0.244 5.2 269.0∙√0.244 = 

132.9 

0.27 -

0.38 

0.325     “ 0.364 4.6 237.9∙√0.364 = 

143.5 

0.58 -

0.60 

0.590     “ 0.629 4.4    (227.6∙√0.629 = 180.5) 

0.75 -

0.80 

0.775     “ 0.814 4.0    (206.9∙√0.814 = 186.7) 

     Mean critical: 139.1 

 

by: 2/51= 0.039. Thus the final crack lengths and linear elastic stress intensities values of the 

series are given in Table 2. The ordinate σu values are measured in cm from Fig. 7.2. Under 

elastic, or so called small-scale yielding conditions, the critical stress intensity is: 

IcK a =    (7.11) 

where σ, the critical stress at the fracture site, and a, half of the critical crack length.  

The mean value of the upper 3 series is 139.1, what has to be multiplied by √(πW)/ δ to get 

the stress intensity. The higher stress intensity ratios of the last 2 series, indicate an 

overestimation due to overcritical initial crack lengths. According to the stress merging 

mechanism of [3] is for long cracks, the local ultimate stress (4.0 and 4.4 of Table 2) 

determining and not the stress intensity.  

The very high variability of the strengths of the shortest initial crack lengths of a/W = 0.1 is 

due to absence of a pronounced ligament, so that small crack initiation ahead of the crack tip 

will be situated  randomly and not at, and in line with, a ligament at the start.   

Because nonlinear fracture mechanics, by an inconsistent J-integral, could not explain  failure 

behavior given by Fig. 7.2 and, because always slip-line solutions are possible, it was 

concluded that excessive overall flow was determining for failure, regarded as: “large scale 

yielding”. However, for the longer cracks, there is no indication of supposed excessive plastic 

flow (determining the ultimate state instead of local fracture) and apparent linear elastic limit 
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analysis approach is shown to be determining and to give one value of the critical stress 

intensity for all test-specimens with a sub-critical initial crack length.   

 

8. Conclusions  

 - Outer the crack “boundary value analysis” of § 4, along the whole crack length, which 

delivers the exact mixed mode failure criterion, there exist a “crack tip” boundary value 

solution, discussed in § 6.1, which in modified form, is applied by all Textbooks. Both 

approaches appear to be based on the same Airy stress function solution of Stevenson. The 

derivation of the crack tip solution is based on small values of the elliptic variables ξ, η, what 

applies close to the crack tip. It is shown that this also applies for θ of Fig. 6.1. Because 

√(r/2c) is small, also θ/2 is small. This is due to the neglection of the first order terms of the 

solution with respect to terms containing the factor √(c/r). This means that √(2c/r) is one 

order higher than 1, or the maximal value of distance  r of the focus to the crack boundary is 

2 orders smaller than the crack length 2c. However, the equations are wrongly applied for any 

value of r and θ, even for r > 2c and θ ≠ 0, giving distorted, and therefore impossible, results. 

For instance, the anti-symmetry stress condition at pure shear loading of the crack, is lost. 

This effect is diminished by ignoring the kink ⸹, of the elliptic boundary, thus  taking the 

upper ⸹ = 0 in Fig. 6.1. This, however, only is right for mode I failure at θ = 0, by a load at β 

= π/2. Thus by a tension load perpendicular to the crack. showing the presence of the 

hydrostatic stress state at the crack tip, in accordance with the exact equations in elliptical 

coordinates of § 4. This does not apply for shear loading in that model. Thus the maximum 

value condition dσt /dη = 0 has no meaning for the “crack tip” boundary value analysis 

because the analysis only applies for  θ = 0. Thus for shear and mixed tension-shear modes, 

only the boundary value analysis along the whole crack length of § 4 applies.  Thus as 

conclusion:  

 - The “crack tip” boundary value analysis of § 6 should not be applied anymore and revision 

of the mathematical equations of all textbooks is necessary following § 4 and [5].  

 - The proof is further given, in § 6.2, that these general accepted textbook equations, for pure 

shear loading and pure tension perpendicular to the crack plane, are literal copies of the 

equations of the “crack tip boundary value” analysis, for elliptical cracks, according to the 

Stevenson Airy stress solution. Instead of a mixed mode failure criterion, the textbooks 

solution wrongly consist of the sum of the solution for pure shear stress loading alone, with 

the solution for pure tensile stress loading perpendicular to the crack direction alone, 
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although these two solutions exclude each other and cannot apply and act at the same time. 

This delivers, a wrong, incompatible, system which does not satisfy the mixed mode failure 

criterion and the crack boundary conditions and therefore does not represent a linear elastic 

fracture mechanics solution. This has to be replaced by the derived mixed mode fracture 

criterion, eq.(5.8) for wood.    

- The crack “boundary value” analysis of § 4, delivers the mixed I-II mode failure criterion, 

thus gives the critical load combinations of far field tension perpendicular to the crack and 

shear stress along the crack, for crack boundary failure, caused by local ultimate uniaxial 

tensile stress (apparent cohesion strength). This mixed mode failure criterion (for wood) 

gives the compatible ultimate tension - shear load combinations. It also gives the compatible 

uniaxial strength for tension without shear loading and ultimate shear strength without  

tensional loading. Failure by separate independently acting modes, as assumed by Textbooks,  

is not compatible thus does not exist.  

- The critical stress intensity, as fracture criterion of wood and isotropic materials, depending 

on the initial crack length, is given by Fig. 7.1. There is no need to regard the curved part as 

plastic or non-linear elastic behavior (as is done) because the whole curve represents  critical 

stress intensity, based on the critical linear elastic behavior, up to yield, of limit analysis.  

- Equations in 1/r should be in 1/ro to give the ultimate state, where ro is the distance from the 

focus to the crack-tip. This is not applied in textbooks. High stresses means short cracks, as 

given in fig. 7.1. This thus also applies for the very small cracks of clear wood, what need not 

to indicate a plastic stage as assumed in Textbooks.   

- The exact boundary value solution, of a flat elliptic crack in an infinite medium, based on 

complex potentials solution of the Airy stress function of Stevenson, is given in elliptic 

coordinates, providing easy stress boundary conditions along the whole flat elliptic crack 

boundary. The then right boundary value solution gives the mixed I-II mode fracture criterion 

(here for wood) which, when transformed to Cartesian coordinates, is a simple expression, 

eq.(4.13). This exact approach should be applied by the Textbooks.  

- The energy approach of Griffith shows that a critical energy release rate or J-integral, as 

such, does not exist and thus is not determining for fracture. Necessary is a related critical 

stress intensity, which represents the critical state for failure. The applied,  so called G-

criterion, eq.(2.3), is not related to a stress intensity in its definition and thus is not right.  

- As given by Fig. 2.1 and 2.2, the first loading to the ultimate state may cause plastic- and 

other non-linear deformation. On unloading and reloading the behavior has become perfect 
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linear elastic, which represents the linear elastic behavior up to yield of limit analysis. There 

is no need to know the first elastic- increasing plastic stage. Relevant is the lower bound 

linear elastic-full plastic approach of limit analysis only.  

- It is important to notice that it is not needed to know when instable fracture occurs, because 

this is an instability of the testing devise and not a material property. Therefore, the R-curve 

need not to be postulated. As lower bound, only a save value at, or below, the top of the 

loading curve should be chosen as ultimate yield state.  

- To avoid configurational changes, which would prevent a right application of limit analysis 

theorems, virtual work and virtual displacements should be applied and only first expanded 

of the load and displacements and the stress division, apply, because second and higher order 

quantities are zero in the virtual limit. For that reason, elementary beam theory applies for the 

compliance method of fracture mechanics (as is general accepted). Thus linear elastic loading 

behavior represents the accountable first expanded of any non-linear loading behavior and 

non-linear fracture mechanics has to be replaced by the linear elastic approach of limit 

analysis. This is applied in the Building codes.  

- The J-integral from contour integration is path dependent in the common structural elastic 

plastic materials and tends to zero as the contour shrinks to the crack tip. This also applies for 

a growing crack in an elastic material. A critical energy release rate or J only exist when 

related to a critical stress intensity and thus does not represent a material property.  

Because not the deformation theory, but the flow theory of plasticity applies, for structural 

materials, no path-independence of J is possible and under real occurring load histories, 

which include local unloading, e.g. at (small) cracks extension, J has no physical meaning.  

- Crack extension, by shear along the crack, or tension perpendicular to the crack or by a 

combination of both, occurs when the uniaxial tensile strength at the crack boundary is 

reached. The failure modes are not fracture modes but crack opening modes by elastic strain 

release. The crack “boundary value analysis” then delivers the mixed mode failure criterion 

eq.(4.13), which is empirically verified at a high significance (Table 1).  

- At the smallest radius on top of the crack tip, high stress and strength is possible due to the 

occurring hydrostatic stress state. This is a consequence of the critical distortional energy 

principle of the strength where the shear stress is zero. An undetermined high strain and 

tensile strength then is possible. This hydrostatic stress state is shown to apply not only for 

pure tensile loading perpendicular to the crack, but as derived, also applies for pure shear 

loading along the crack. Thus therefore it applies for any load combination. Probably the 
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radius of the crack tip is able to be adapted to avoid strain differences, creating a zone of 

hydrostatic stresses (fracture process zone) above the crack tip in combination with a plastic 

zone extension. This is the explanation of the empirical found high hydrostatic stresses in the 

fracture process zone. .   

- Hydrostatic stress failure is not determining for failure at the crack tip and thus is not part of 

the mixed mode failure criterion. Mixed mode tests in tension and shear, on short sawn 

notches, in clear wood, may show oblique crack extension according to ultimate uniaxial 

tensile stress failure at the crack tip boundary. This is confirmed by theory and by tests on the 

same notch form (not pre-cracked) in concrete. Further crack propagation was also normal to 

the maximal principal stress (confirmed by finite element calculation). The sawn notch had a 

rectangular top, thus is flat at the top with 2 wide angle (90o) side notches at the crack 

boundary. This means, that at high stress (due to short cracks), and absence of small cracks 

near the crack tip, (clear wood) these wide angle notches may be determining. In common 

tests, this oblique crack extension does not occur, due to razor blade sharpening of the notch. 

This delivers a longer crack with smaller crack-tip-radius on top, what then always is 

determining, showing then the wanted collinear crack extension adjacent to the hydrostatic 

stress spot.  

- The so called nonlinear fracture mechanics is not able to explain failure behavior as given 

by Fig. 7.2, because the J integral does not exist in this case and because always slip-line 

solutions are possible, it was concluded that excessive overall flow was determining for 

failure, what is called: “large scale yielding”. However, in limit analysis, any equilibrium 

system applies to obtain a lower bound solution, also applicable when there is no excessive 

plastic flow. Thus  linear elastic-full plastic limit analysis approach is determining and gives 

one value of the critical stress intensity for all test-specimens with a sub-critical initial crack 

length (See Table 2). 

 - Based on the potentials eq.(4.3) and eq.(4.4) all stresses everywhere in the field around the 

crack can be calculated. See Fig. 6.2 for the result. And also the stress transformations are  

known. Because:  

( ) ( )2 ' 'x y z z       + = + = +    (4.19) 

22 ( 2 ) i

y x xyi i e 

       − + = − + = 2[ ''( ) '( )][ '( ) / '( )]z z z     +  (4.20) 
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τxy is known from the imaginary part of eq.(4.20) and σy – σx from the real part. Thus with 

eq.(4.19), all stresses are known in Cartesian coordinates. The same is possible for 

transformation to polar coordinates. 

 - The main error of non-linear fracture mechanics is the postulate of existence of critical 

energy release rates for each stress type, which consequently act independently of each other, 

and thus violate compatibility conditions and violate the necessary mixed mode fracture 

criterion. Important is that it is the consequence of that postulate, that no compatibility and no 

mixed mode failure criterion is possible.  

 - The exact equations (4.19 to 4.21) in elliptical coordinates, show, that for pure mode I and 

for pure shear loading along the crack length, a hydrostatic ultimate stress occurs at the crack 

tip. In the limit both, at the same place and at the magnitude. This therefore also applies for 

any load combination. According to the critical distortional energy principle this may provide 

an undetermined high strength to cover the high singularity stress,  

 - The presence of sharp cracks in materials thus indicate the presence of pure hydrostatic 

stress (without shear) and the presence of an isotropic matrix, showing behavior as reinforced 

material.  
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Figure 2.1. Bending stress diagram    Figure 2.2. Elastic –full plastic behavior  

 

 

Figure 4.1. Elliptic hole and coordinates (van der Put 2011) 

  

 

 

Figure 4.2. - Stresses in the notch plane Ox (van der Put 2011) 
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Figure 5.1. Equation numbers are of the first edition of (van der Put 2011)  

 Eq.(2.31) = (5.1);  Eq.(2.30) = (4.13) 

 

Figure 6.1. Confocal polar coordinates for transformation of the elliptical crack coordinates  

to polar crack tip coordinates  

  

 

  

Figure 7.1.  Limit LEFM behavior, depending on the crack-length d to process zone do ratio  

showing no nonlinearity. Thus a HRR-analog is not relevant. Data of (Bazant 1999).  
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FIGURE 7.2  JR in kN/m   
Effect of crack length/specimen width ratio on J-R curves for HY130 steel single-edge-notched bend (SE(B)) 

specimens. Taken from Towers, O.L. and Garwood, S.J., ‘‘Influence of Crack Depth on Resistance Curves for 

Three-Point Bend Specimens in HY130.’’ ASTM STP 905, American Society for Testing and Materials, 

Philadelphia, PA, 1986, pp. 454–484. 

 

 

Tables 

 

Table 1. - Lack of fit values for supposed failure criteria  (Mall et al 1983) 

Failure criterion p-

value  

/ 1I IcK K =   0.0001  

/ / 1I Ic II IIcK K K K+ =  0.0001  

( )
2

/ / 1I Ic II IIcK K K K+ =  0.5629 

( )
2

/ / 1I Ic II IIcK K K K+ =  0.0784 

( ) ( )
2 2

/ / 1I Ic II IIcK K K K+ =  0.0001  
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Table 2. – Critical stress intensity at supposed large scale yielding 

          Crack length a/W  Stress and stress intensity 

group mean added total stress reduced KIc  

0.09 -

0.11 

0.100 0.039 0.139 7.3 cm  377.6∙√0.139 = 

140.8 

0.18 -

0.23 

0.205     “ 0.244 5.2 269.0∙√0.244 = 

132.9 

0.27 -

0.38 

0.325     “ 0.364 4.6 237.9∙√0.364 = 

143.5 

0.58 -

0.60 

0.590     “ 0.629 4.4 227.6∙√0.629 = 

180.5 

0.75 -

0.80 

0.775     “ 0.814 4.0 206.9∙√0.814 = 

186.7 

     Mean critical: 139.1 

 

 

 

Appendix x 

D. Structural failure criteria of wood structures 
 

Introduction 
The developed exact theory is given in the appended publications denoted by D, thus:  

D(1991), D(2008a), D(2008b), D(2010), D(2011), D(2012a) D(2012b) and primary, by the 

partly expired D(2006a), D(2006b). Other relevant derivations and applications are 

mentioned in these publications. The theory in all appended publications was derived by 

T.A.C.M. van der Put as theory of perfect plasticity. Because a complete loading history 

analysis, with gradual increasing plasticity, until collapse is too extended and not necessary 

for ultimate state estimation, the relatively simple limit analysis method can always be 

applied instead. Then, no matter how complex the geometry of a problem, or loading 

condition, is, it is always possible to obtain a realistic value of the collapse load. This basic 

theory is discussed in the next section: D-1.  

 

D-1. Upper and lower bound limit analysis of wood structures  
The ultimate state represents a variational extremum problem and thus is based on small 

geometrical changes (using undeformed dimensions in the equilibrium equations). Because of 

the small changes, the virtual work equations apply. Because the top of a loading curve can 

be reached in many ways, differing an internal equilibrium system from each other, the 

previous loading history is not involved in the determination of the extremum and it is 

possible to use a linear- full plastic loading diagram for limit analysis (as is applied e.g. in 

exact fracture mechanics C(2011b)). In Fig.D-1, a scheme of the loading curve is given with 
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a boundary (the elastic limit, depending on loading rate, temperature, etc.) where below the 

behavior can be assumed to be elastic (especially after mechanical conditioning) and where 

above the gradual flow of components at peak stresses and micro-cracking may have a 

similar effect as plastic flow with a hardening history up to the ultimate failure stress. The 

total main plane loading curves due to flow, damage and hardening behavior at any 

deformation rate, temperature, moisture content, loading history etc., up to flow and failure, 

fully can be described by deformation kinetics (see Annex B). When this loading curve is 

followed to a chosen or real ultimate stress point and then unloaded, the elastic and “plastic” 

deformation is known of that limit point. (The “plastic” amount (permanent strain in Fig.D-1 

depends on the past, unknown, loading history at growth, drying, manufacturing, transport 

and pre-testing). 

Fig.D-1. Loading curve 

On reloading, the curve is elastic up to the limit point and it is possible to regard an elastic –

full plastic description of the loading line according to the dashed line in Fig.D-1 as an 

allowable displacement field in the sense of limit analysis (that needs not to be the real 

occurring displacement for the virtual work equations). Also a reduced stiffness can be 

chosen as done for the Building Codes. 

The virtual work equation, represents the extremum condition that the first variation of the 

potential energy is zero. Thus a small variation of the total potential energy vanishes when 

the structure is in equilibrium. Thus the total work of an equilibrium system is zero for any 

virtual displacement. The virtual work equation thus is based on an equilibrium set and a 

compatible set, which need not, and should not, be related. Thus:  
* * *

i i i i ij ij

A V V

T u dA Fu dV dV + =   ,  (D-1) 

integrated over the whole area A and volume V of the body. iT  and iF are external forces on 

surface and in the body; ij  are the stresses, in equilibrium with the external forces, which 

need not to be the real actual occurring stresses. The asterisk is used for the compatible set, to 

emphasize that the two sets are not related, thus are completely independent.  

A valid equilibrium set must satisfy the equilibrium equations:  

0
ji

i

j

F
x


+ =


  (D-2)  

and the equilibrium conditions at the load applications points (as boundary condition).  

Of the compatible set, are the strains 
*

ij  compatible with real or imagined (virtual) 

displacement rate *

iu  of the points of application of the external forces, following the strain 
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and displacement rate compatibility equation.  
**

*2
ji

ij

j i

uu

x x



= +
 

 (D-3)  

Virtual displacements are not real, they can be physically impossible but they must be 

compatible with the geometry of the original structure and they must be small enough so that 

the original geometry is not significantly altered.  

As equilibrium set, also the load increments can be used giving the rate equation:  
* * *

i i i i ij ij

A V V

T u dA Fu dV dV + =   .  (D-4) 

In the linear-full plastic schematization is the plastic zone a line in Fig.D-2, but is a plane in 

stress space. Plastic flow occurs when the yield function ( ) 0ijf  =  is satisfied. It is 

necessary that:  

 
Fig.D-2 Yield surface and flow rule 

 

( ) 0a c p

ij ij ij  −   ,  (D-5) 

Thus this dot product is always positive and shows an angle 
090  , because thermo-

dynamical real work (and real dissipation) has to be positive. Eq.(D-5) only is for all cases 

fulfilled when the vector p

ij  is perpendicular to the curve ( ) 0ijf  = , thus is in the direction 

of / ijf   . This is the convexity requirement or normality rule wherefore the principle of 

maximal local energy dissipation applies for the actual stress state, i.e. the projection in 

fig.D-2, of vector a

ij  on p

ij  is then maximal, higher than such projection of any other critical 

vector. In that case also the zero value of eq.(D-5) is reached for the plastic stress increment. 

Thus for the plastic flow increment then is:  

0p

ij ij  =   (D-6) 

From eq.(D-4) and (D-6) follows, that when the limit load is reached and the deformation 

proceeds under constant load, all stresses remain constant and only plastic, (not elastic) 

increments of strain occur. Because at collapse, eq.(D-4) becomes:  
c c c c c c

i i i i ij ij

A V V

T u dA F u dV dV + =   .  (D-7) 

With 0c c

i iT F= = , and with elastic and plastic parts of strain, c ec pc

ij ij ij  = +  is eq.(D-7):  

( ) ( ) 0c c c ec pc c ec

ij ij ij ij ij ij ij

V V V

dV dV dV      = + = =     (D-8) 

because of eq.(D-6), and thus 0c ec

ij ij  = . Thus the elastic strain increment and consequently, 
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the elastic stress increment, are zero and all deformation is plastic. Thus the elastic 

characteristic plays no part in the collapse at the limit load.  

Next it is possible to give the proof of the lower and upper bound theorems of limit analysis.  

The lower bound theorem states that, if an equilibrium distribution of stress E

ij , covering the 

whole body, can be found, which balances the applied loads and is everywhere below yield 

( ) 0E

ijf   , then the body will not collapse.  

To prove this, assume that it is false, then two collapse equations exist:  
c c c c c c

i i i i ij ij

A V V

T u dA F u dV dV + =    

c c c c E c

i i i i ij ij

A V V

T u dA F u dV dV + =    

and consequently is, because all deformation is plastic:  

( ) 0c E pc

ij ij ij

V

dV  − = ,  (D-9) 

and because according to eq.(D-5): ( ) 0c E pc

ij ij ij  −   for E

ij  below yield, eq.(D-9) cannot be 

true and the lower bound theorem is proved.  

The upper bound criterion states that if a compatible mechanism of plastic deformation is 

found, which satisfies the displacement boundary conditions, then the loads, determined by 

equating the rate, at which the external forces do work, eq.(D-10): 
* *p p

i i i i

A V

T u dA Fu dV+  ,  (D-10) 

to the rate of internal dissipation, eq.(D-11): 
* *( )p p p

ij ij ij

V V

D dV dV  =    (D-11) 

will be either higher or equal to the actual limit load.  

Again, assume the theorem false, and the computed loads to be less than the actual limit load, 

then the following equation should apply:  
* * *p p E p

i i i i ij ij

A V V

T u dA Fu dV dV + =     (D-12) 

with E

ij  everywhere below yield. Because iT  and iF  follow from equating eq.(D-10) and 

eq.(11), it follows that:  
* *( ) 0p E p

ij ij ij

V

dV  − =   (D-13) 

However, according to eq.(D-5) * *( ) 0p E p

ij ij ij  −   for E

ij  below yield, what leads to a 

contradiction and thus to the proof of the upper bound theorem.  

Some corollaries, to be mentioned, following from the lower bound theorem, are, that:  

- Initial stress or deformation have no effect on the plastic limit or collapse load provided the 

geometry is essential unaltered. This is e.g. applied in C(2014).  

- The limit load, computed from a convex yield surface, which circumscribes the actual 

surface, will be an upper bound on the actual limit load. The limit load computed from an 

inscribed surface will be a lower bound of the actual collapse load. This last is  applied in the 

derivations of e.g. D(2008a), by using the, in the von Mises inscribed Tresca polynomial). 

The graphical proof of the lower and upper bound is as follows:  

In fig.D-3 is the plastic strain increment c  normal to the failure surface and is vector l  just 

inside the surface. Index c stands for actual collapse load and index l indicates lower bound.  
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Fig.D-3. Proof of the lower bound theorem 

 

 
Fig.D-4. Proof of the upper bound theorem 

 

According to the virtual work principle is for collapse:  

c c c c
V

F w dV =   

and for a lower bound:  

l c l c
V

F w dV =   

where F is the external force and w the displacement of F. The internal stress is c  with    

as strain increment. The dot product is the product of the strain increment with the 

components of the stress vector in the direction of strain increment. According to fig.D-3 is  

l c c c   
  

thus is a lower bound due to the convexity of the yield function.  

For the proof of the upper bound criterion applies, according to fig.D-4, that collapse must 

have occurred if:  

u u u u
V

F w dV =    

According to the virtual work equation is: the upper bound criterion 

c u c u
V

F w dV =    

The figure shows by projection of u  and c  on u that:  
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u u c u      

Thus also u cF F and uF  thus is the upper bound because of the convexity of the yield 

function. 

 D. Structural failure criteria of wood structures 
 

Introduction 
The developed exact theory is given in the appended publications denoted by D, thus:  

D(1991), D(2008a), D(2008b), D(2010), D(2011), D(2012a) D(2012b) and primary, by the 

partly expired D(2006a), D(2006b). Other relevant derivations and applications are 

mentioned in these publications. The theory in all appended publications was derived by 

T.A.C.M. van der Put as theory of perfect plasticity. Because a complete loading history 

analysis, with gradual increasing plasticity, until collapse is too extended and not necessary 

for ultimate state estimation, the relatively simple limit analysis method can always be 

applied instead. Then, no matter how complex the geometry of a problem, or loading 

condition, is, it is always possible to obtain a realistic value of the collapse load. This basic 

theory is discussed in the next section: D-1.  

 

D-1. Upper and lower bound limit analysis of wood structures  
The ultimate state represents a variational extremum problem and thus is based on small 

geometrical changes (using undeformed dimensions in the equilibrium equations). Because of 

the small changes, the virtual work equations apply. Because the top of a loading curve can 

be reached in many ways, differing an internal equilibrium system from each other, the 

previous loading history is not involved in the determination of the extremum and it is 

possible to use a linear- full plastic loading diagram for limit analysis (as is applied e.g. in 

exact fracture mechanics C(2011b)). In Fig.D-1, a scheme of the loading curve is given with 

a boundary (the elastic limit, depending on loading rate, temperature, etc.) where below the 

behavior can be assumed to be elastic (especially after mechanical conditioning) and where 

above the gradual flow of components at peak stresses and micro-cracking may have a 

similar effect as plastic flow with a hardening history up to the ultimate failure stress. The 

total main plane loading curves due to flow, damage and hardening behavior at any 

deformation rate, temperature, moisture content, loading history etc., up to flow and failure, 

fully can be described by deformation kinetics (see Annex B). When this loading curve is 

followed to a chosen or real ultimate stress point and then unloaded, the elastic and “plastic” 

deformation is known of that limit point. (The “plastic” amount (permanent strain in Fig.D-1 

depends on the past, unknown, loading history at growth, drying, manufacturing, transport 

and pre-testing). 
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Fig.D-1. Loading curve 

On reloading, the curve is elastic up to the limit point and it is possible to regard an elastic –

full plastic description of the loading line according to the dashed line in Fig.D-1 as an 

allowable displacement field in the sense of limit analysis (that needs not to be the real 

occurring displacement for the virtual work equations). Also a reduced stiffness can be 

chosen as done for the Building Codes. 

The virtual work equation, represents the extremum condition that the first variation of the 

potential energy is zero. Thus a small variation of the total potential energy vanishes when 

the structure is in equilibrium. Thus the total work of an equilibrium system is zero for any 

virtual displacement. The virtual work equation thus is based on an equilibrium set and a 

compatible set, which need not, and should not, be related. Thus:  
* * *

i i i i ij ij

A V V

T u dA Fu dV dV + =   ,  (D-1) 

integrated over the whole area A and volume V of the body. iT  and iF are external forces on 

surface and in the body; ij  are the stresses, in equilibrium with the external forces, which 

need not to be the real actual occurring stresses. The asterisk is used for the compatible set, to 

emphasize that the two sets are not related, thus are completely independent.  

A valid equilibrium set must satisfy the equilibrium equations:  

0
ji

i

j

F
x


+ =


  (D-2)  

and the equilibrium conditions at the load applications points (as boundary condition).  

Of the compatible set, are the strains *

ij  compatible with real or imagined (virtual) 

displacement rate *

iu  of the points of application of the external forces, following the strain 

and displacement rate compatibility equation.  
**

*2
ji

ij

j i

uu

x x



= +
 

 (D-3)  

Virtual displacements are not real, they can be physically impossible but they must be 

compatible with the geometry of the original structure and they must be small enough so that 

the original geometry is not significantly altered.  

As equilibrium set, also the load increments can be used giving the rate equation:  
* * *

i i i i ij ij

A V V

T u dA Fu dV dV + =   .  (D-4) 

In the linear-full plastic schematization is the plastic zone a line in Fig.D-2, but is a plane in 
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stress space. Plastic flow occurs when the yield function ( ) 0ijf  =  is satisfied. It is 

necessary that:  

 
Fig.D-2 Yield surface and flow rule 

 

( ) 0a c p

ij ij ij  −   ,  (D-5) 

Thus this dot product is always positive and shows an angle 
090  , because thermo-

dynamical real work (and real dissipation) has to be positive. Eq.(D-5) only is for all cases 

fulfilled when the vector p

ij  is perpendicular to the curve ( ) 0ijf  = , thus is in the direction 

of / ijf   . This is the convexity requirement or normality rule wherefore the principle of 

maximal local energy dissipation applies for the actual stress state, i.e. the projection in 

fig.D-2, of vector a

ij  on p

ij  is then maximal, higher than such projection of any other critical 

vector. In that case also the zero value of eq.(D-5) is reached for the plastic stress increment. 

Thus for the plastic flow increment then is:  

0p

ij ij  =   (D-6) 

From eq.(D-4) and (D-6) follows, that when the limit load is reached and the deformation 

proceeds under constant load, all stresses remain constant and only plastic, (not elastic) 

increments of strain occur. Because at collapse, eq.(D-4) becomes:  
c c c c c c

i i i i ij ij

A V V

T u dA F u dV dV + =   .  (D-7) 

With 0c c

i iT F= = , and with elastic and plastic parts of strain, c ec pc

ij ij ij  = +  is eq.(D-7):  

( ) ( ) 0c c c ec pc c ec

ij ij ij ij ij ij ij

V V V

dV dV dV      = + = =     (D-8) 

because of eq.(D-6), and thus 0c ec

ij ij  = . Thus the elastic strain increment and consequently, 

the elastic stress increment, are zero and all deformation is plastic. Thus the elastic 

characteristic plays no part in the collapse at the limit load.  

Next it is possible to give the proof of the lower and upper bound theorems of limit analysis.  

The lower bound theorem states that, if an equilibrium distribution of stress E

ij , covering the 

whole body, can be found, which balances the applied loads and is everywhere below yield 

( ) 0E

ijf   , then the body will not collapse.  

To prove this, assume that it is false, then two collapse equations exist:  
c c c c c c

i i i i ij ij

A V V

T u dA F u dV dV + =    
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c c c c E c

i i i i ij ij

A V V

T u dA F u dV dV + =    

and consequently is, because all deformation is plastic:  

( ) 0c E pc

ij ij ij

V

dV  − = ,  (D-9) 

and because according to eq.(D-5): ( ) 0c E pc

ij ij ij  −   for E

ij  below yield, eq.(D-9) cannot be 

true and the lower bound theorem is proved.  

The upper bound criterion states that if a compatible mechanism of plastic deformation is 

found, which satisfies the displacement boundary conditions, then the loads, determined by 

equating the rate, at which the external forces do work, eq.(D-10): 
* *p p

i i i i

A V

T u dA Fu dV+  ,  (D-10) 

to the rate of internal dissipation, eq.(D-11): 
* *( )p p p

ij ij ij

V V

D dV dV  =    (D-11) 

will be either higher or equal to the actual limit load.  

Again, assume the theorem false, and the computed loads to be less than the actual limit load, 

then the following equation should apply:  
* * *p p E p

i i i i ij ij

A V V

T u dA Fu dV dV + =     (D-12) 

with E

ij  everywhere below yield. Because iT  and iF  follow from equating eq.(D-10) and 

eq.(11), it follows that:  
* *( ) 0p E p

ij ij ij

V

dV  − =   (D-13) 

However, according to eq.(D-5) * *( ) 0p E p

ij ij ij  −   for E

ij  below yield, what leads to a 

contradiction and thus to the proof of the upper bound theorem.  

Some corollaries, to be mentioned, following from the lower bound theorem, are, that:  

- Initial stress or deformation have no effect on the plastic limit or collapse load provided the 

geometry is essential unaltered. This is e.g. applied in C(2014).  

- The limit load, computed from a convex yield surface, which circumscribes the actual 

surface, will be an upper bound on the actual limit load. The limit load computed from an 

inscribed surface will be a lower bound of the actual collapse load. This last is  applied in the 

derivations of e.g. D(2008a), by using the, in the von Mises inscribed Tresca polynomial). 

The graphical proof of the lower and upper bound is as follows:  

In fig.D-3 is the plastic strain increment c  normal to the failure surface and is vector l  just 

inside the surface. Index c stands for actual collapse load and index l indicates lower bound.  
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Fig.D-3. Proof of the lower bound theorem 

 

 
Fig.D-4. Proof of the upper bound theorem 

 

According to the virtual work principle is for collapse:  

c c c c
V

F w dV =   

and for a lower bound:  

l c l c
V

F w dV =   

where F is the external force and w the displacement of F. The internal stress is c  with    

as strain increment. The dot product is the product of the strain increment with the 

components of the stress vector in the direction of strain increment. According to fig.D-3 is  

l c c c   
  

thus is a lower bound due to the convexity of the yield function.  

For the proof of the upper bound criterion applies, according to fig.D-4, that collapse must 

have occurred if:  

u u u u
V

F w dV =    

According to the virtual work equation is: the upper bound criterion 

c u c u
V

F w dV =    

The figure shows by projection of u  and c  on u that:  
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u u c u      

Thus also u cF F and uF  thus is the upper bound because of the convexity of the yield 

function.  

 


