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Abstract 

Limit Analysis is an prescribed exact approach of Wood Science, what is shown to also apply 

for wood Fracture Mechanics. Knowledge of the gradual elastic to plastic behavior and of the 

imitation by non-linear elasticity (and J-integral) is shown to be not needed. The linear – full  

plastic limit approach delivers an elastic lower bound, up to this full plastic boundary, the 

fracture- or yield criterion, where ultimate load behavior is described, by virtual work 

approach and “flow” by the normality rule. This delivers the possibility to look at any 

equilibrium system, which satisfies compatibility and boundary conditions and nowhere 

exceeds this “flow” criterion and is verified by test data. Because the accepted singularity 

approach does not deliver a right mixed mode fracture criterion, it is necessary to make 

comparisons with other possible Airy stress functions. Therefore, the derivation of the 

accepted, general applied, elementary singularity solution with its 3 failure modes, is 

discussed and compared with new theory. This new limit analysis theory is based on an older, 

forgotten, Airy stress function, and shows e.g., by the new approach and application to wood, 

that there is no real difference between strength theory and fracture mechanics and between 

linear and non-linear theory. It delivers the, empirical verified, exact mixed mode failure 

criterion for wood; shows that stresses in the isotropic wood matrix also have to be regarded 

separately, to explain the, only by isotropy, possible, extremely high triaxial hydrostatic 

stress, and stress increase by the stress spreading effect. Therefore the stresses and strengths 

of the isotropic wood matrix are derived. The transformation to total stresses, including the 

reinforcement is shortly given for the empirical verification and for literature reference. 

Therefore, only the derivation of the necessary corrections of the singularity approach, for 

isotropic material, is regarded. This leads to a necessary rejection of the, tree failure modes, 

singularity approach of Irwin and of associate equations. By the splitting in 3 modes, there is 
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no compatibility and no mixed mode fracture criterion. In stead there are tree, each 

excluding, Airy stress functions, thus 3, each excluding, compatibility equations. Necessary 

is one mixed mode solution for the total load. Then the solution also is known for separate 

acting (thus non zero) loading components. This is done in § 4, necessarily in elliptic 

coordinates, to know failure, by the highest tangential, uniaxial tensile stress in the crack 

boundary. The tangential direction in polar coordinates is not tangential to the elliptic first 

expanded of the crack boundary. Therefore then, not the right KIIc values are obtained. The 

expression in elliptic coordinates delivers (by the highest empirical correlation) the failure 

criterion of wood for every load combination, (always due to the ultimate tensile stress). 

Transformation of this mixed mode solution to polar coordinates gives the corrected 

singularity method based on a mixed mode failure criterion and delivers also the definition of 

the stress intensity factor. This last also gives an other interpretation of the Bazant curve, 

which is shown, in § 2, to be the initial mode I yield criterion.   

 

1. Introduction  

A right, exact, failure criterion is an indispensable part of the strength calculation of design. 

Such, so called, mixed mode fracture criterion is lacking in the generally applied singularity 

approach. This is discussed in § 3 and leads to the analysis of the inconsistencies of the 

separate failure modes description. It is shown in § 6, that the right singularity equations 

follow from transformation to polar coordinates of the exact limit analysis equations of § 4.  

Based on extended strength research on clear wood and timber, [1][2][3][4] and fracture 

mechanics research of e.g. [5] and [6], it appeared that the failure criterion of strength theory 

is of the same form as the fracture mechanics critical crack extension criterion, (see § 4). This 

shows strength theory to be the initially small crack fracture mechanics theory. This is 

empirically confirmed in § 2, and thus the first discussed, because it is the starting point for 

the derivation of both, the singularity approach in § 3 and the exact approach of § 4.  

It was derived in the past [1], that the tensor-polynomial equation should be regarded as  

a polynomial expansion of the real failure surface in stress space. Also is shown, in e.g. [4], 

that the third degree polynomial is identical to the real failure criterion and that the second 

degree part of the polynomial is identical to the orthotropic extension of the von Mises 

criterion for initial yield by micro-crack extension. Further was shown that the third degree 

polynomial hardening terms of the criterion incorporate the § 4 theoretical derived mixed 

mode I-II fracture equation, showing “hardening” to be based on the start of critical small-
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crack extension, which is hindered by the reinforcement to follow the most critical direction. 

The clear wood results, of [1], are also discussed together with the biaxial data for timber of 

[2], in e.g. [3], as result of a co-operative project. By that, all aspects of the failure criterion 

are known and are presented e.g. in [4] and empirically confirmed, e.g. in § 5. Needed is still 

the here given discussion of the singularity approach with its necessary replacement by an 

exact approach.  

A short introduction, to refer to, of the general applied calculation method is first needed.  

Fracture by flat initial cracks is a two-dimensional problem and the boundary value approach 

should be based on the equilibrium equations and the compatibility condition in strains:  
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Substitution of the stress-strain relations in eq.(1.1), gives: 
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where χ = 3 - 4υ for plane strain and χ = (3 – υ)/(1 + υ) for plane stress, and υ is Poisson’s 

ratio. The stresses should satisfy the equilibrium equations which are after differentiation:  
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where ρ is the density of the body, of the body force.    

Substitution of eq.(1.3) in eq.(1.2) gives:  
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If body forces X and Y are derived from a potential V, so that:  
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then eq.(1.4) becomes: 

 2 0x y    .  (1.6) 

By the Airy stress function U is for equilibrium:  
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and by substitution in eq.(1.6), the compatibility equation becomes:  

 2 2 0U      (1.8) 

or: 
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Important is that for compatibility of shear- and normal strains, eq.(1.2) or eq.(1.8) has to be 

applied for a solution. This is lacking for the total load in the singularity approach. In the 

following equations, the dash on top means, that it is the conjugate complex. Thus:  

i      

is the conjugate complex of: ζ=ξ+iη. The derivative, always with respect to z, (z=x+iy) is 

given by a slash. Thus, with aid of the Cauchy-Riemann equations, is:  

 '
d d d d d

z i i
dz dx dx dx dy

    
        (1.10) 

The common textbook solution of the Airy stress function U is in terms of two analytic 

functions ϕ(z) and χ(z), where U is the real part of:  

   z z z  .  

       0.5U z z z z z z         ,   (1.11) 

           2 2/ 0.5[2 ' '' 2 ' '' '' '' ]x U y z z z z z z z z                 (1.12) 

           2 2/ 0.5[2 ' '' 2 ' '' '' ' ]y U x z z z z z z z z                 (1.13) 

       2 / 0.5[ '' '' '' '' ]xy U x y i z z i z z i z i z               (1.14) 

From these equations follows:  
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Needed for § 4 and § 6 are transformations to curvilinear coordinates:  

 z   ,  (1.17) 

giving the function which connects point ζ=ξ+iη in the ζ–plane to z=x+iy  in the z-plane  

Then follows from the equations (1.16) and (1.15):  

   2 ' 'x y z z               (1.18) 
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with:  

   2 ' / 'ie         cos 2 sin 2i     (1.20) 

Differentiation, is with respect to z, thus: 
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For transformation, according to eq.(1.17), to elliptic coordinates, is:  

     cosh coshz x iy c c i          =    cosh cosc          

   / ' sinhdz d c     ,       cosh cosx c   ,     sinh siny c   .  (1.22)  

Thus, for a constant ξ = ξo, the corresponding curve in the x, y plane is the ellipse:  
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with semi-axes:  a = ccosh(ξo),  b =csinh(ξo).,  . When  η = ηo  is constant, the curves are 

hyperbolae, confocal with the ellipses (see Fig. 1):  
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The focus distance is 2c. 

 

Figure 1 - Elliptic hole and elliptic coordinates [4] 

 

This problem of the infinite region with an elliptic hole, loaded by an uniaxial stress p 

inclined at β to the crack plane, was solved, in elliptic coordinates, by Stevenson [7] by the 

following functions: ϕ(z),  and  χ’(z) = ψ(z)  

       0 02 2 2
4 cos(2 )cosh 1 sinh

i
z pce pc e

     
      (1.25) 

          02

0 04 [cosh 2 cos 2 sinh 2 ]cosz pc e i ech              (1.26) 

Then for a flat elliptic crack, ξo =0,  is: 

          cos 2 1 cos 2 sinh 2 sin 2 sin 2p p                 (1.27) 

            2cosh 2 cos 2 [ 1 cos 2 cos 2 1 sinh 2p p                   

                  cosh 2 cos 2          cos 2 cosh 2 sin 2 sin 2 ]         (1.28)  

           20.5 sinh 2 sin 2 0.5 [sinh 2 sin 2 cos 2 1p p               
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                         1 cos 2 cosh 2 1 sin 2         (1.29) 

where    α = (cosh(2ξ) – cos(2η))
--1

  (1.30) 

The transformation to polar coordinates is discussed in § 6. 

 

2. Unity of strength theory and small crack fracture mechanics 

The interpretation of the strength data-line of Fig. 2, of geometrically similar specimens of 

Bazant, is to regard, the inclined line to represent LEFM theory, the horizontal line to be the 

maximal stress, strength theory and the curved, connecting line, to follow nonlinear fracture 

theory. However, there is no difference between nonlinear and linear elastic (LEFM) fracture 

mechanics. For both the linear elastic - full plastic approach of limit analysis applies. When a 

specimen is loaded until flow, the following unloading and reloading is elastic. This elastic 

reloading until full plastic flow represents the limit analysis approach. The elastic boundary 

to the full-plastic zone exists as failure criterion, by a single curve in stress space as given by 

Fig. 2. In this figure of e.g. [8], is d/d0, the ratio of specimen size to the fracture process zone 

size. But, because the line is the result of volume effect tests, the initial crack length is 

proportional to the test-specimen length. Thus, d /d0, also can be regarded to be the ratio: 

initial open crack length, to the process zone size. Then, for small values of d, this d /d0 ratio 

also may represent the critical small crack density in a macro specimen (because d also is the 

small crack interspace).  

The curved line of Fig. 2, follows the equation:  

 0 0ln ln 0.5ln 1 /d d        (2.1)  

as result of a power law curve fitting. Eq.(2.1) therefore is:   

0.5 0.5
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—>   0 0 0( ) cd d d K      ,    (2.3) 

in accordance with eq.(4.11). This confirms that the curve represents the stress intensity as 

ultimate state with Kc as critical  stress intensity factor as should be for values of d/do >>1. 

For these higher values, the curved line approaches the drawn straight tangent line 

 0 0ln ln 0.5 ln 1 /d d      0 0ln 0.5ln /d d     (2.4) 

 with the necessary slope of the curve:  
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as limit. The real slope however is 

:
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This slope is: – 0.5 for  d >> do and this slope is zero when d = 0. Eq.(2.3) shows that for the 

whole curve LEFM applies and it is an indication that, at zero open crack dimensions, thus 

for: d = 0, the clear wood ultimate strength theory still follows LEFM, because it applies also 

for the constant initial length do (the constant fracture process zone length). After first yield 

drop, to half way unloading, maximal spreading is reached, and the strength theory further  

applies [4] for further unloading by crack extension. Similar to steel, where yield drop is due 

to dislocation multiplication and dislocation breakaway, applies for wood, that the start of 

yield drop is due to micro-crack multiplication (as fracture process zone do) and micro- crack 

propagation and merging (see [4]). The, in § 4 derived, Wu-equation eq.(4.10), then reduces 

to eq.(4.9), expressed in stresses in stead of in stress intensities and, with τu =2σt  for isotropic 

 

  

Figure 2. Limit LEFM behavior, [8], depending on the crack-length d to process zone do ratio 

 showing no nonlinearity, thus a J-integral analog is not allowed.   

 

matrix stresses, turns to the failure criterion of strength theory for clear wood eq.(2.7), when 

total stresses, including the reinforcement, are accounted. 

2

2
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y xy

t u

 

 
   (2.7) 

It now follows that the general accepted application of the J-integral related models [9] to 

explain eq.(2.4) don’t hold. This also follows by too high data scatter of e.g. [9]. For instance,  

Fig .3.27 of [9] of the critical crack tip opening displacements CTOD, of steel panels, show a 

scatter between 0.2 and 2 mm. The Single Edge Notched Bend test, SE(B) shows a CTOD 

scatter (between 12,5 and 87.5 percentiles) of more than twice the median value. The same 
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tendency follows for critical J-integral values from SE(B) tests of Fig. 3.28 of [9]. Thus 

CTOD and J-integral are not able to represent and explain fracture data, certainly not at real 

occurring plastic flow. To pass the lack of fit test of Table 1, it is necessary that, on first 

sight, mean data values are very close to theoretical curve, as applies for the regarded, in § 4 

discussed, fracture criterion of wood. 

 

3. Rejection of the tree fracture modes singularity approach  

3.1. Discussion of the derivation  

Stresses around a crack tip, at distance r and direction θ are regarded to follow eq.(3.1) 

according to the now general accepted [10] fracture mechanics derivation [9], [11], [12]:   

     , , ,
2 2 2

I II III
i j i j i j i j i j i j i j

K K K
f s g s h s

r r r
   

  
     (3.1) 

where K is stress intensity and sij are compliances This equation is based on the idea that a 

stress field can be divided according to 3 types of associated modes of deformation. The 

crack opening mode I, the sliding mode II and the pure torsional mode III. Discussed 

separately, in literature, is the solution, eq.(3.1), for KI =KII =0, thus for loading by KIII alone. 

Because a comparable failure interaction equation for the 3 modes is lacking, only eq.(3.1) 

for KI and  KII, (with KIII  = 0) is regarded. As mentioned in § 1, the solution of the 

biharmonic equation of the Airy stress function, which is necessarily in terms of two complex 

functions, and leads to the different terms of eq.(3.1), is based on  a simple, most elementary, 

form in r and θ, containing 5 constants to adapt to boundary conditions and is, with:    

z =re
iθ

  and  e
iθ

 = cos(θ) + i sin(θ):  

   1 1

1 2f i z f i z           (3.2) 

The chosen symmetry conditions, of the displacements, for failure in the opening mode I, 

reduces this solution with two constants β = δ = 0 in eq.(3.2) and the two boundary 

conditions: eq.(3.3), then determine the constants: λ = - 0.5  and  α = 2γ  so that one constant: 

γ remains, which is arbitrarily assumed to be KI. This means that arbitrarily variable (c)
1/2

 is 

added, to form a new variable  σij(c)
1/2

, without any proof, what is not allowed. The result of 

the derivation was:  σ22 = 2γr
 -1/2

f(θ), where γ is proportional to the loading stress p ad 

infinitum and σ22 = σt , the tensile strength, in the ultimate state. Thus: σt = 2p(r)
–1//2

 f(0) 

determines the critical value of p. The derivation thus is a common derivation of strength 

theory and not of fracture mechanics, because the stress boundary conditions at the crack 

boundary are not satisfied. Thus the strength at the crack boundary is not regarded (as done in 
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the right approach of § 4 and § 6). The argumentation that adding factor c
1/2

 follows from 

dimensional analysis, only confirms that the strength at the crack boundary 2c has to be 

regarded because the same dimensional argument does not apply for any other identical 

analysis of strength theory outside the crack.  

The same procedure, as followed for mode I loading, is followed for mode II. Now α = γ =0 

by chosen anti-symmetry displacement conditions and because λ = −0.5, and β and δ are 

related by the value of KIIc for the only present stress σ12 at θ = 0, all constants are known. 

However, by this choice of separate failure modes, eq.(3.1) is not general valid in the ultimate 

state. Because the biharmonic Airy stress function, which is the strain compatibility equation, 

expressed in stresses, eq.(1.1), is different for symmetric and anti-symmetric loading, there is 

no compatibility for the total load sum according to eq.(3.1) and there is a mutual exclusion 

of the terms of eq.(3.1). The first term in KI only applies when KII = KIII =0  and the second 

term in KII only applies when KI  = KIII =0. Eq.(3.1) thus is in fact a meaningless stress 

superposition, of the results of the each excluding solutions for alone mode I, alone mode II 

and alone mode III. Needed for compatibility of shear and normal strains, is one Airy stress 

function (eq.(1.2) or eq.(1.8)), for the total load KI plus KII  (KIII = 0) of eq.(3.1). This single 

compatibility for the total load, is applied in § 4 and § 6, as correction of the, not compatible 

tree modes singularity approach. This leads to a real linear elastic mixed mode fracture 

criterion as general solution.  

Because for the derivation of eq.(3.1), the crack is not regarded to be the limiting case of  

a flat ellipse, it should have been defined by: −c < x < c causing two singularities at two end 

points: x = ± c. By boundary condition eq.(3.3), is in fact half an infinite crack length 

regarded. Point θ=± π, at r = 2c (the crack length) is the opposite crack tip thus also a point 

of the crack boundary and thus is not stress free.   

The, in [11a], [12a], chosen stress boundary definition: KI = lim(σ22 (2πr)
1/2

)r→0  is arbitrary 

and is trivial, because the product  (σ22 (2πr)
1/2

)  is independent of r. The right limit, where 

σ22 = σt , the tensile strength, and r = r0 of the crack boundary, is KIc =p(πc)
1/2

, as derived in 

§ 4. The aim of the chosen boundary condition, eq.(3.3), is stated in [11], to define a stress 

free crack surface. This is not right because this surface contains the highest tensile stresses 

near the crack tip, from where fracture starts. Therefore this condition:  

   22 12 0              (3.3)  

has to be regarded to determine the stress free center of the crack. According to the exact 

approach of § 4, this condition, eq.(3.3), is automatically fulfilled due to the stress free center 
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of the flat elliptical crack. This also follows from the corrected singularity approach of § 6, 

by applying eq.(3.3), when looking at these stresses at  θ =±π. As mentioned, conditions 

eq.(3.3), determine 2 constants of the specific chosen Airy stress function. For a non-trivial 

solution, then is necessary, that: λ = - 1/2, n/2  with n = 0,1,2,... and the derived stress is: 

   2 1 , ...i j i j i jr f s      .. =  1/2 , ...i j i jr f s  ..  1/2 ,i j i jr f s .  (3.4)  

Thus, only one term, the first term with r
 – 1/2

, applies, satisfying the boundary condition of 

a zero crack tip stress influence at infinitum. Thus the stated row solution with positive 

values of λ does not exist. This also applies for the constant (λ=0, n=0), positive or negative 

term, what means that the T- stress [9] of fracture mechanics of metals does not exist and by 

that, also not the Q-parameter, and other related variables.   

In § 2 and § 4 is shown that, the already at the time of Griffith applied, maximal tensile stress 

failure criterion has to be used for extension of micro cracks at the fracture process zone.  

This so called “maximum tangential stress” criterion is also applied for the derivation of 

eq.(3.1). However, the tangential direction in polar coordinates is not tangential to the elliptic 

crack boundary. Therefore not the right results are obtained. For instance: KIIc < KIc  is found, 

while normally KIIc >> KIc. (because KIIc ≈ 2 to 10 times KIc for materials, see § 4). Because 

there always is tensile failure in the opening mode, shear sliding thus is due to elastic 

unloading after tensile failure in the opening mode, as confirmed by test specimens, showing 

no shear failure. Thus assumed anti-symmetry conditions don’t apply at failure. Application 

of this maximal tangential tensile stress condition: ∂ σtt/∂θ = 0,  ∂
2
 σtt/∂θ

2
 < 0  on the 

components of eq.(3.1) leads to [11a], [12a]:  

    sin 3cos 1 0I IIK K     (3.5) 

This suggests, that eq.(3.5) is the mixed mode fracture criterion. However, there is no 

compatibility for combined loading, due to the, per load type, different applied Airy stress 

functions. Therefore, in [11a], eq.(3.5) is split again into the separate two loading cases to 

determine the tensile strength for each case:  

 sin 0IK   ,     sin 0c  ,   0c     (3.6) 

for mode I loading alone, when KII = 0, and:  

  3cos 1 0IIK      (3.7) 

Or: cos(θ) = 1/3 for mode II loading alone, when KI = 0,  giving:  

0arccos(1/ 3) 70.6c       

of which the negative angle  θc = −70.6
o
  is determining.  
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According to the derivation of  eq.(3.1) is this tangential stress:  

tt 
3 1 3 3 3 3

cos cos sin sin
4 2 4 2 4 2 4 22 2

I IIK K

r r

   

 

        
            

        
  (3.8) 

and the tensile strengths follow from the critical θc values of eq.(3.6) and (3.7).  

Then for KII = 0 and θc = 0, the tensile strength is:  

ttu 
02

IcK

r
   (3.9) 

However, mathematically, this also applies for any value of KII  because gij(θ = 0)  in 

eq.(3.1). This is known to be untrue.  

For a critical mode II load, when KI = 0, is, for failure by the tensile strength of eq.(3.9): 

ttu 
02

IcK

r 0

4 / 3

2

IIcK

r


       3/ 4IIc IcK K  0.87 IcK    (3.10)  

This is not a right outcome. The exact solution of § 4 shows KIIc =2 KIc, as higher, thus more 

probable, lower bound, for isotropic material. Thus eq.(3.1) does not represent, in the 

ultimate state, the mixed mode failure criterion.  

To investigate, whether eq.(3.1), as sum of 2 special, opposite, solutions of eq.(3.1), may 

represent, in the ultimate state, a not compatible failure state, eq.(3.5) has to be solved as 

follows:  

Regarding a right angled triangle with longest side of 1 and shortest side of a, then, the third 

side is  (1-a
2
)
1/2

  and sin(θ) = a, thus cos(θ) = (1-a
2
)
1/2

. Then eq.(3.5) becomes:  

      2sin 3cos 1 3 1 1 0I II I IIK K K a K a             

 2 2 29 / 2 / 8 0I II I IIa k k a k k        (3.11)  

    
     

 

2

2 2 2

/ / 8
sin

9 / 9 / 9 /

I II I II
c

I II I II I II

K K K K
a

K K K K K K



   

    

    (3.12) 

Thus depending on loading ratio KI / KII, the critical value θc is found, which has to be 

substituted in eq.(3.8). Because in eq.(3.12), the term: 8/{9 + (KI / KII)
2
}  strongly dominates, 

is the dependence on KI  / KII, negligible, especially for wood where KIc / KIIc = 1/7  in the 

given example of § 5, giving: 8/(9+0.02) = 0.887 ≈ 8/9 = 0.889, thus independent of KI / KII. 

Thus the sum of 2 each excluding solutions exclude together all possible solutions. This 

excludes eq.(3.1) again to be in the ultimate state a lower bound, mixed mode failure 

criterion. However, normally the lower bound, KIIc ≈ KIc  would be chosen, according to 

eq.(3.9) and eq.(3.10). Then, the loading, of both KI ≈ KII  to the ultimate state, is a worst 
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loading case. Thus for KI = KII  is:   

0.1 0.01 0.8 0.1 0.9a        (3.13) 

The solution: a = sin(θ) = 1 = sin(π/2)  delivers a negative strength by eq.(3.8). Thus only 

negative values of θ and sin(θ) apply, giving a maximal value of eq.(3.8), for: 

   sin 0.8 sin 0.9273a      ,     0.927c     0( 53 ) .  

Substitution in eq.(3.8) then gives   

       0.716 1.0735 1.789 1.789Ic I II I IIK K K K K       0.559I II IcK K K    (3.14) 

Thus at a loading  KI = 0.559 KIc , is KII = 0.559 KIc . This is close to, but higher than 0.5K1c, 

so that correction by linear interpolation is possible. Where eq.(3.9) shows that for mode I 

alone applies: K1 /KIc ≤ 1, then for mode II alone, K1I /KIIc  ≤ 1 should apply as correction, 

providing by interpolation the wanted linear (in K1 and KII) failure relation like eq.(3.1):  

/ / 1I Ic II IIcK K K K  ,   (3.15) 

This also applies for higher, real occurring values, of KIIc, as is derived in [4], and may 

explain also, the empirical success of applying eq.(3.15).  

 

3.2. Discussion of SED-like fracture criteria 

An other applied criterion, to predict crack extension, is the minimum strain energy density 

(SED) criterion, which only applies for an elementary Airy stress function solution, which 

delivers stresses in 1/√r. It could be expected that a SED-like criterion applies for brittle 

materials. Structural materials, however, show a higher order fracture energy, showing local 

“plasticity” to be determining. Therefore the same derivation, as done for the SED-equation, 

is possible, and more probable based on a critical distortional energy (CDE) criterion, (see [4] 

- Appendix II) what leads, to the same equation as the SED-equation, with an identical form 

and number of terms, with only difference of numerical constants, thus leads to a comparable 

equation as the SED equation. It is thus probable that the critical CDE, and not the minimal 

SED- principle applies. The exact mixed mode failure criterion of § 4, (the Wu-equation) 

which also directly can be derived, based on a critical distortional energy (see [4], § 5.2), is 

generally applicable and thus should replace a SED- or CDE- like criterion.  

In the ultimate state, virtual work and virtual displacements are determining and the elastic 

state then has no influence on this ultimate value. Thus, a first order expanded of the 

compliance (IAW virtual work approach) should be used in the ultimate state. The in [10a], 

on page 15 and page 86, prescribed, complicated formula for the orthotropic compliance does 

not fit to the data thus should not be used. The measured elementary compliance is right for 
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calculations in the main direction. Also an increased compliance value (as applied in the 

Building Codes to adapt to total deformation) is allowed for the “elastic–full plastic” ultimate 

state approach of limit analysis. For compliance differences, the elementary linear theory 

(e.g. beam theory) applies because the triangle bending stress diagram and parabolic shear 

stress diagram represent the first expanded of a row expansion of any real, linear or curved, 

bending stress and shear stress division. Only the first expanded should be accounted at 

virtual changes. It is wrong to account for lower order effects, thus, e.g. also is forbidden, to 

account for the lower order clamping effect difference at virtual crack extension of notched 

beams.  

 

4. Exact Lower Bound solution of fracture of the isotropic wood matrix  

The elliptic crack can be seen as first expanded of any crack form. The mathematics of 

stresses around a flat elliptic hole, (giving by this crack form, the highest stresses, and thus 

the most probable lower bound solution), have been discussed by many authors. Since the 

twentieth, the time of Griffith, many specific solutions were obtained based on the Airy stress 

function. The mathematics is given in textbooks and in the referenced literature. Here the 

analysis in elliptical coordinates with the Airy stress function of [7] is followed.  

For the description of the elliptic crack, it is obvious to use elliptic coordinates, e.g. for 

giving the needed stress boundary conditions along the whole crack boundary, and the right 

crack tangent direction, necessary for an exact solution.  

As mentioned in § 1, the mathematical solution of the biharmonic Airy stress function 

equation, eq.(1.8) is given in terms of analytic functions  ϕ(z) and  χ(z). Most problems are 

solved by taking these functions as polynomials or power series in z or z 
-1

, where: z = x + iy. 

Eq.(3.1) is a special example of such solution.  

For the elliptic hole ξ = ξo with semi-axes: a = c cosh(ξo) and b = c sinh(ξo) in an infinite 

region with uniaxial stress p at infinity, inclined at  β  to the major axis Ox of the ellipse, (see 

Fig. 3), the functions  ϕ(z) and χ’(z) = ψ(z) are according to [7]:   

       0 02 2 2
4 cos(2 )cosh 1 sinh

i
z pce pc e

     
      (4.1) 

          02

0 04 [cosh 2 cos 2 sinh 2 ]cosz pc e i ech              (4.2) 

These equations (4.1) and (4.2) satisfy the required conditions at infinity and at the surface: 

ξ =  ξo  of the elliptic hole.  Using eq.(1.22), dz / dζ = ω’(ζ) =c sinh(ζ), it follows that:  

       0 02 2 24 ' 4 cos 2 1 cothid d
z pe p e

d dz

   
  



       (4.3)  
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The tangential stress σt at the crack boundary ξ = ξo  is simply: σt  = ση  because there σζ = 0, 

and using (4.3), and because:  

   2 ' 'x y z z             ,    0 02 ' 't i i            

     0 02 2 2

0cos 2 0.5 1 coth
i

pe p e i
    

        02 2

00.5 1 coth
i

p e i
   

  

       0
12

0 0cos 2 cosh 2 cos 2 sinh 2pe p    


       

           0
12

0 0cos 2 sinh 2 sin 2 sin 2 cosh 2 cos 2pe       


          

        
   

0 0

0

sinh 2 cos 2 exp 2 cos 2

cosh 2 cos 2
p

    

 

  



  (4.4) 

This eq.(4.4) can be extended by superposition to two stresses at infinity: p2 inclined at β to 

Ox and p1 at  π/2 + β, making any loading combination (σy  τxy) possible, according to:  

   2 2

1 2sin cosx p p    ,      2 2

1 2cos siny p p    ,      1 20.5 sin 2xy p p     

giving:  

            

   
0 0 0

0

2 sinh 2 2 [(1 sinh 2 )cot 2 exp 2 cos 2 cos 2 ]

cosh 2 cos 2

y xy

t

ec        


 

   



  (4.5) 

For a flat crack, thus for small ξ0 and η this is:  

 0

2 2

0

2 y xy

t

  


 





  (4.6) 

The maximal tangential stress follows from dσt /dη = 0. Thus: 

 2 2

0 02 0xy y                2 2

0 /y y xy xy        
  

.  (4.7) 

  

 

Figure 3. - Stresses in the notch plane Ox [4] 

 

Substitutions in (4.6) gives:  

 2 2

0 t y y xy         (4.8) 
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This equation can be written:  

    
2

2
2 2 2 2

0 t y y xy y xy            ,      

 

2

2

0 0

1
( ) / 2

xy y

t t

 

   
    (4.9) 

Transformation from elliptic to polar coordinates, by eq.(6.5) below, gives: 

 0 02 / cosr c     02 /r c   

and substitution in eq.(4.9) gives:  

 

   

2
2

2 2
0

0

1
/ 2 2

xyy I II

Ict IIct

cc K K

Kr Kr

  

   
       (4.10) 

what should replace the ultimate value of eq.(3.1), while eq.(4.9) with constant ξo, for clear 

wood, gives the ultimate stress, strength criterion.  

Eq.(4.10) is equal to the empirical Wu-equation. Wu noticed a jumping over fibres, what is 

identical to fracture propagation at a small value of δ, which thus is neglected.  

Eq.(4.10) further shows that fracture mechanics with constant stress intensity:  

0 / 2Ic y c tK c r       (4.11) 

only applies when ro and σt, are constant. Thus σt  represents the cohesion strength at the 

crack tip craze and ro is the invariant radius of the constant dimensions of the, “fracture 

process zone” called, craze, at the crack tip. This zone clearly represents a kind of crazing 

with, as such, an invariant size, (which is regarded to be related to a material inhomogenities 

structure). As shown by eq.(6.14), hydrostatic tension occurs at the crack tip:  

/ 2r p c r        ( 0xy  )   (4.12) 

what also is equal to the third stress, due to confined contraction, (ν = 0.5) what means, that 

these local stresses may become undetermined high, without failure in the isotropic wood 

matrix (lignin with branched hemicellulose). This need not apply for orthotropy, because 

then, for equal triaxial stresses, the strains are not equal and yield remains possible. However, 

for local compressional loading, the strong increase of strength, due to confined dilation, is 

generally known, see [13a]. An “unconfined  plasticity” calculation method (method of 

characteristic) based on stress spreading was already in the Dutch Code rules. The isotropic 

wood matrix therefore may sustain large stresses without yielding, because yield depends on 

a critical value of the distortional energy. High hydrostatic tension is, as well, possible in 

materials. Measured is e.g. 60 atmospheres for tension of water in a glass tube. Hydrostatic 
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tension, made possible by a stress equalizing, stress spreading effect in wood thus is shown to 

be possible in the fracture process zone and explains the stress increase by the spreading 

effect for tension [4]. Crazing just occurs in regions of high hydrostatic tension, or in regions 

of very localized yielding, which leads to the formation of interpenetrating microvoids. At 

sufficient high tensile stress, the connections elongate and break, causing microvoids to grow 

and coalesce so that cracks begin to form. Crazing occurs in polymers, because that material 

is held together by a combination of weaker Van der Waals forces and stronger covalent 

bonds. Sufficient local stress overcomes the Van der Waals force, allowing a narrow gap. For 

wood, also the much stronger hydrogen bonds are involved. Once the slack is taken out of  

a backbone chain, covalent bonds, holding the chain together, hinder further widening of the 

gap. The gaps then are bridged by fibrils of the stretched backbone chain.  

The process of craze growth, prior to cracking, absorbs fracture energy and effectively 

increases the fracture toughness of a polymer. The initial energy absorption per square meter 

in a craze region has been found to be up to several hundred times that of the un-crazed 

region, but quickly decreases and levels off. Crazes form at highly stressed regions, thus also 

at scratches, flaws, stress concentrations and molecular inhomogenities. Crazes generally 

propagate perpendicular to the applied tension (as cracks do). Crazing thus is typical for 

amorphous material of the isotropic wood matrix. 

Because the high value of σt and small ro are not known in eq.(4.10), but only the product 

σt (ro)
1/2

, it is also possible to regard σt as flow stress and ro  as elastic-plastic boundary of 

limit analysis.  

 

5. Empirical verification of the mixed mode failure criterion 

For isotropic material eq.(4.10) predicts that KIIc = 2 KIc. This is e.g. verified for Balsa wood, 

which is elastic orthotropic, but is extremely light, thus has a very low density of 

reinforcement, and thus is the isotropic matrix determining for the strength showing the 

isotropic strength behavior by KIIc = 2 KIc  as verified by the data of Wu on Balsa  (by 

KIIc ≈ 140 psi.in
0.5

  and KIc ≈ 60 psi.in
0.5

; (where KIIc ≥ 2 KIc by some hardening in the mode II 

test, and KIc ≤ KIIc/2  by early instability of the tension test). 

The Wu- equation is generally applicable also when σy is a compression stress as verified by 

the measurements. When the compression is high enough to close small notches 

(σy,cl ≈ 2Gxyξo), τxy has to be replaced by the effective shear stress:  

 *
xy xy y y,cl      ,  
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where μ is the friction coefficient, giving:  

 
2

*
xyy,cl

2 2
0 t 0 t

1
/ 2


 
   

,  (5.1) 

what is fully able to explain fracture by compression perpendicular to the notch plane, [4].  

The stress strain relations for orthotropic stresses in denser wood, can be given by: 

11 12x x yc c    ;   12 22y x yc c    ;   66xy xyc  .  (5.2) 

Substitutions of eq.(5.2):  

2 2

11 122 2x

U U
c c

y x


 
 

 
, ……. 

etc.  in the compatibility condition: 

 

2 22

2 2

y xyx

y x x y

   
 

   
,     (5.3)  

gives:   

 
4 4 4

22 66 12 114 2 2 4
2 0

U U U
c c c c

x x y y

  
   

   
  (5.4) 

Wood acts as a reinforced material and can be treated to contain e.g. a shear-reinforcement 

and a tensile reinforcement in the main direction. Then, for equilibrium of the matrix stresses 

(expressed in the total stresses) applies:  

 
2

2

1

x U

n y

 



;   
2

2y

U

x






;    
2

6

xy U

n x y

 
 

 
,   (5.5) 

Inserted in the compatibility equation, eq.(5.3), this should give the isotropic Airy tress 

function. But the same compatibility should apply for matrix and reinforcement. Thus 

inserting the total stresses in eq.(5.3) should give a proportional result, given by eq.(5.6):   

 
4 4 4

22 6 66 1 12 1 114 2 2 4
(1 ) 0

U U U
c n c n c n c

x x y y

  
    

   
    (5.6) 

For the isotropic matrix thus is:  

1 11 22/ 1n c c  ;     6 66 1 12 22( 1 ) / 2n c n c c   ,  

giving:  

4 4 4
2 2

4 2 2 4
2 ( ) 0

U U U
U

x x y y

  
    

   
          (5.6) 

22
1

11

x

y

Ec
n

c E
  ;       12 12 22

6 21 12

22 11 66

2 2
xy

y

Gc c c
n

c c c E
 

 
        
 

   (5.7)  
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This orthotropic-isotropic transformation of the Airy stress function in the elastic state of the 

reinforcement and the calculation method based on the stresses of the matrix makes it 

possible to use the isotropic solutions of U to find the matrix stresses (which should not 

surmount the matrix strength). In this way eq.(4.10) becomes in total orthotropic stresses: 

 

 

22 2
y y IIiso ort I

2 2 2 2 2 2
0 t 0 t Ic0 t 0 t 6 IIc

KK
1

/ 2 / 2 Kn K

  
     
      

  (5.8) 

and it follows that: 

IIc 0 t 6
6

Ic 0 t

K n
2n

K / 2

 
 
 

  (5.9) 

 6 21 122 2 2 /xy yn G E        

= 2(2 + 0.57)/0.67 = 7.7 for Spruce and: 2(2 + 0.48)/0.64 = 7.7 for Douglas Fir in TL-

direction, according to data of [10a]. This is, in this chosen example, independent of the 

densities of respectively 0.37 and 0.50 at a moisture content of 12 %. Thus, for KIc ≈ 

265 kN/m
1.5

, is KIIc = 7.7x265 = 2041 kN/m
1.5

  in TL-direction. In RL-direction this factor is 

3.3 to 4.4. Thus, when KIIc  is the same as in the TL-direction, the strength in RL-direction is 

predicted to be a factor 1.7 to 2.3 higher with respect to the TL-direction. This however 

applies at high crack velocities (“elastic” failure) and is also dependent on the site of the 

notch. At common loading rates a factor lower than 410/260 = 1.6 is measured [10] and at 

still lower cracking speeds, this strength factor is expected to be about 1 when fracture is in 

the “isotropic” middle lamella. It then thus is independent of the TL and RL-direction 

according to the local stiffness and rigidity values. To know the mean influence, it is 

necessary to analyze fracture strength data dependent on the density and the elastic constants 

of n6. From the rate dependency of the strength follows an influence of viscous and 

viscoelastic processes. This has to be analyzed by Deformation Kinetics Theory [14].  

Empirical verification of the above derived theory equation, eq.(5.8), which is a Coulomb  

equation, often called Wu-equation for wood, is not only obtained by [5], but also by tests of   

[6], done at the TL-system on eastern red spruce at normal climate conditions using different  

kinds of test specimens. The usual finite element simulations provided the geometric 

correction factors, and the stress intensity factors. The lack of fit test was performed on these 

data, at the for wood usual variability, assuming the five different, often suggested empirical 

failure equations of Table 1. The statistical lack of fit values in the table show, that only the 

Wu-failure criterion, the third equation of Table 1, cannot be rejected due to lack of fit.  
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Table 1. - Lack of fit values for different failure criteria [6] 

Failure criterion p-

value  

/ 1I IcK K    0.0001  

/ / 1I Ic II IIcK K K K   0.0001  

 
2

/ / 1I Ic II IIcK K K K   0.5629 

 
2

/ / 1I Ic II IIcK K K K   0.0784 

   
2 2

/ / 1I Ic II IIcK K K K   0.0001  

 

The Wu-equation is shown to fit also clear wood and timber strength data in [3] and [1], as 

expected from theory.  

  

6. Corrected Singularity equations, following from the exact solution 

For correction of eq.(3.1), which gives stresses near the crack tip in polar coordinates, it is 

sufficient to transform the exact equations from elliptical coordinates to Cartesian and polar 

coordinates. The stresses, outside the crack boundary follow from the solution of the Airy 

stress function of § 4. A point near the crack tip of ellipse ξ = ξo  with coordinates:     

   cosh cos ,x c         sinh siny c   ,  (6.1) 

with the focus x = c of the ellipse as new origin with Cartesian coordinates X, Y, (see Fig. 4) 

is for small values of ξ and η:  

 2 2 / 2X x c c      ,     Y y c    (6.2) 

what is in polar coordinates :  

2 2r X Y      cos ,X r   ,    sin ,Y r    (6.3)  

From (6.2) follows:  

 
1/2

2 2 2 22 / 2 /X Y c r c       (6.4) 

And from (6.2) and (6.4):  

        
1/21/2 1/2

/ 1 cos / cos / 2r c r c       (6.5) 

        
1/21/2 1/2

/ 1 cos / sin / 2r c r c        (6.6) 

The quantity α of eq.(1.30) becomes:  
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1

cosh 2 cos 2  


  =  2 20.5 / 4c r     (6.7) 

 

Figure 4.- Confocal coordinates of the elliptical crack [4] 

 

The angle δ follows from 

             2 ' / ' sinh / sinh /i ie i i i i e                      (6.8) 

or:   δ =θ/2    (6.9) 

Substitution of this in equations (1.27) to (1.29) gives for the flat crack 0 0   for loading    

by stress p at infinity at an angle β to the crack:   

r              cos 2 1 cos 2 sinh 2 sin 2 sin 2p p                  

         cos 2 1 cos 2 2 2 sin 2p p              

            
1/2

cos 2 / 2 1 cos 2 cos / 2 sin 2 sin / 2p p c r            (6.10) 

The first term is constant and negligible with respect to the term in ( r)
 – 1/2 

.   

Proceeding in this manner leads to:  

               
1/2

2 2 2 28 / ( ) sin / 2 1 3sin / 2 sin 2 2cos / 2 1 sin / 2 sinrr cp               (6.11) 

           
1/2

2 2 2 28 / ( ) 3sin / 2 cos / 2 sin 2 2cos / 2 sinr cp              (6.12) 

              
1/2

2 2 2 28 / ( ) cos / 2 3cos / 2 2 sin 2 2cos / 2 sin / 2 sinrr cp               (6.13) 

For the common mode I test with collinear crack propagation is: β = π /2  and  θ = 0.  

Then is: (8r/(cp
2
))

1/2
σr = 2  and   (8r/(cp

2
))

1/2
σθ = 2 ,   and   τrθ = 0.   Thus is:   

/ 2r p c r     (6.14) 

Showing, by the equal stresses, a local hydrostatic tension. This is discussed at eq.(4.12). 

In general, for pure mode I, thus β = π/2, follows: 
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1/2 22 / cos / 2 1 sin / 2rr c p      (6.15) 

   
1/2 32 / cos / 2r c p    (6.16) 

     
1/2 22 / cos / 2 sin / 2rr c p    (6.17) 

For failure is:  

/ 0    .         
1/2 22 / / (3 / 2) cos / 2 sin / 2 0r c p         ,    0    

Thus for σθ = σt , the tensile strength, is:  

2I t Icp c K r K       (6.18) 

The loading case, for pure shear S, follows from eq.(6.11) to eq.(6.13) by superposition of 

p = S  at β = π/4  with  p = - S  at  β = 3π/4  giving: 

      
1/2 22 / sin / 2 1 3sin / 2rr c S      (6.19) 

     
1/2 22 / 3 sin / 2 cos / 2r c S      (6.20) 

      
1/2 22 / cos / 2 3cos / 2 2rr c S       (6.21) 

For failure is: ∂σθ / ∂θ = 0.     Thus: 

       
1/2 3 22 / / (3 / 2) {cos / 2 2sin / 2 cos / 2 } 0r c S          ,   tan / 2 0.5 0.707     

Thus:  

0r r          22 3 0.577 0.817 1.155tr S c S c                

2 /1.155 /1.155II t IIc IcS c K r K K       . (6.22) 

The same was found by the derivation of eq.(3.1) in [11a], [12a], although an other Airy 

stress function was used, which however shows the same periodicity by the use of sinus and 

cosinus functions. The outcome difference with the exact solution of § 4, where KIIc = 2KIc ,   

thus is due to the fact that according to the singularity approach in polar coordinates, the 

direction r∙d(θ)  is not tangential to the direction of the crack, but cut this crack boundary 

under an angle of θ /2 (see Fig. 4). Only for pure mode I, when θ = 0  the right tangential 

direction is given and thus the right outcome for  KIc. Thus the singularity approach, in polar 

coordinates gives, by regarding the wrong tangential direction of the crack, a far too low 

value of KIIc , thus should be rejected and not be used. By the following, the corrected 

equations will be given and the consequences of application of the wrong critical polar 

tangential stress criterion.  Eq.(3.1) becomes, corrected for combined loading:  
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1/2 22 / cos / 2 1 sin / 2rr c p          2sin / 2 1 3sin / 2S      (6.23) 

   
1/2 32 / cos / 2r c p     23 sin / 2 cos / 2S    (6.24) 

     
1/2 22 / cos / 2 sin / 2rr c p        2cos / 2 3cos / 2 2S      (6.25) 

It follows that: σθ = τrθ  = 0 for θ = ± π .   (6.26) 

It thus appears that condition eq.(3.3) is automatically fulfilled by the presence of the empty 

space in the centre of the flat elliptic crack. Thus this condition gives not condition of the 

absence of stress at the crack boundary, but gives the zero stresses in the centre of the crack.  

The wrong critical tangential stress follows from  ∂σθ / ∂θ =0  or: 

          2 2 33 sin / 2 cos / 2 3 2cos / 2 sin / 2 cos / 2 0p S                

      2sin / 2 cos / 2 1 3sin / 2 0p S         (6.27) 

    2tan / 2 1 2tan / 2 0p S         

     2tan / 2 / 2 tan / 2 0.5 0p S       

or finally: 

   
2

tan / 2 / 4 / 4 0.5p S p S       (6.28) 

Thus for any load combination  p/S = KI /KII , the angle θ is known and by that all stresses are 

known. Substitution of eq.(6.27) in eq.(6.25) gives: 

0r  .  (6.29) 

Thus σr  and  σθ  are principal stresses. Thus a local extreme is found.  

Substitution of eq.(6.27) in eq.(6.23) gives:  

 2 / cos / 2rr c p     (6.30) 

Substitution of eq.(6.27) in eq.(6.24) gives, with  σθ = σt  , the tensile strength:  

       2 22 / cos / 2 / sin / 2 cos / 2 / sin / 2tr c S S           (6.31) 

σθ  is the highest stress when  σθ  > σr , thus when:  p > |S|. This is confirmed in the ultimate 

state, by eq.(6.22), for the regarded direction.  

These equations, thus are based on stresses in an oblique direction of θ/2 to the elliptic crack 

boundary direction, which values are lower than the real critical, in plane values of § 4.  

The maximal tangential stress criterion thus does not apply for the equations in polar 

coordinates. Only for pure mode I, when θ = 0 the right tangential direction is given and thus 

the right outcome for KIc.  
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7. Conclusions  

Limit Analysis is a prescribed exact approach of Wood Science, what is shown to apply also 

for wood Fracture Mechanics. The linear elastic –full plastic approach delivers simple lower 

bound equilibrium solutions, making judgement of results of other methods possible, e.g.  

 According to limit analysis, there is no difference between nonlinear and linear elastic 

 (LEFM) fracture mechanics. For both the linear elastic - full plastic approach applies. 

 An other interpretation is given of the size effect curve of Bazant. Based on the 

 mathematical expression, the curve shows to represent linear elastic fracture mechanics 

 up to limit of strength theory for crazing at zero open crack length. The properties of the 

 crazing strength appear to determine and define the strength behavior according to the 

 stress intensity factor. Strength theory thus is identical to small crack fracture mechanics 

 and thus basic for all fracture processes.  

 Stresses in the isotropic wood matrix have to be regarded separately, to explain the there, 

 at crazes, possible, extremely high triaxial hydrostatic stress and the triaxiality by the 

 stress spreading effect [4].   

The derivation of the, only accepted, boundary value solution based on the separate 3 failure 

modes model of Irwin, is discussed what leads to rejection by the following remarks:   

 The general solution should, by definition, lead to a mixed mode fracture criterion. This  is 

 lacking in this singularity approach, what should lead to rejection of the method.  

 Condition eq.(3.3) does not mean that there is a stress free crack boundary, but indicates  

 a zero stress at the centre of the crack. In the exact solution § 4, and the corrected 

 singularity  solution § 6, this condition applies automatically by the presence of the crack. 

 The highest stresses occur at the crack boundary wherefore failure applies according to the 

 maximal tangential tensile stress criterion. The Irwin solution thus does not satisfy the 

 boundary and strength condition at the crack boundary. Therefore, the solution is an 

 ultimate  strength condition of strength theory, which is independent of the crack length 2c. 

 This can not be corrected, as done, by simply putting variable c
1/2

 before the stress in the 

 strength solution and regard (σ c
1/2

) as new variable, without any derivation.   

 Stresses around a crack tip are regarded to follow eq.(3.1) of Irwin according to the now 

 general accepted fracture mechanics, boundary value, derivation:  

      , , ,
2 2 2

I II III
i j i j i j i j i j i j i j

K K K
f s g s h s

r r r
   

  
     (3.1) 

The applied analysis shows that this is the sum of 3, each excluding, solutions in the 3 modes. 

The first term in KI  applies for normal loading only and symmetric displacements, thus only 
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when KII = KIII =0  and the second term in 
IIK  applies for shear loading only when 

KI = KIII =0, etc. Because the biharmonic Airy stress function, is the strain compatibility 

equation, expressed in stresses, eq.(1.1), is different for symmetry or anti-symmetry loading 

conditions, there is no compatibility for the total load sum according to eq.(3.1). The equation 

thus cannot be a linear elastic fracture mechanics equation. Needed for compatibility of shear 

and normal strains is one Airy stress function: eq.(1.2) or eq.(1.8), for the total load KI  plus 

KII  plus KIII of eq.(3.1). This is applied in § 4 and § 6, as correction of the, not compatible 

tree modes singularity approach.  

The so called “maximum tangential stress” criterion is also applied for the derivation of 

eq.(3.1). However, the tangential direction in polar coordinates is not tangential to the elliptic 

first expanded of the crack boundary. Therefore not the right results are obtained but e.g. 

KIIc = 0.87 KIc., while the exact solution gives KIIc = 2 KIc. The same low value of 

KIIc = 0.87 KIC   is found for the corrected singularity approach in polar coordinates, 

independent of the applied, mutual totally different, Airy stress functions. This is due to the 

same periodicity by the use of sinus and cosinus functions  

This again leads to a necessary rejection of the separate 3 failure modes model of Irwin and 

of all solutions in polar coordinates, based on the maximal tangential stress failure criterion.  

The corrected, compatible singularity equations of § 6 follow from transformation to polar 

coordinates of the exact limit analysis equations of § 4. Of course, also for the corrected 

equations the applied polar maximal tangential stress criterion gives the wrong results.  

The tangential direction of the flat elliptic crack should be regarded which represents the first 

expanded of any crack form and according to limit analysis, only application of first 

expanded terms are allowed. For this reason also beam theory has to be used for compliance 

differences according to the energy approach of fracture of beams. The linear bending stress 

diagram and parabolic shear stress diagram are the first expanded of the row expansion of 

any occurring bending and shear stress division.  

It has to be concluded that the right results only can be obtained by a description by an 

elliptic crack and to use elliptic coordinates, e.g. for giving the needed stress boundary 

conditions along the whole crack boundary, and the right crack tangent direction, necessary 

for an exact solution, which is for a flat crack, thus for small ξo and η:   

 0

2 2

0

2 y xy

t

  


 





  (4.6) 

The maximal tangential stress follows from dσ /dη = 0 , leading to:   
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( ) / 2

xy y
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    (4.9) 

For a constant ξo this is the clear wood ultimate stress criterion of strength theory.  

Transformation from elliptic to polar coordinates, by eq.(6.5), gives:  

 0 02 / cosr c     02 /r c   

and substitution, in equation above, gives:  
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what is the only failure criterion with a sufficient high correlation (see Table 1) and should 

replace the ultimate value of eq.(3.1). 

This last equation further shows that fracture mechanics with constant stress intensity:   

0 / 2Ic y c tK c r       

only applies when 0r  and t , are constant. Thus σt  represents the cohesion strength of the 

crack tip crazes and ro is the invariant radius of the constant dimensions of the, “fracture 

process zone” (based on the material inhomogeneity structure of the craze, at the crack tip). 

The, in [11a], [12a], chosen stress boundary definition: KI =lim r →0 (σ22∙(2πr)
1/2

) is arbitrary 

and is trivial, because the product  (σ22∙(2πr)
1/2

) is independent of r.  

Hydrostatic tension, made possible by stress equalizing stress spreading effect in wood thus 

is shown to be possible in the fracture process zone and explains the hydrostatic stress effect 

for tension. It is probable that hydrostatic stress is generally caused by the stress spreading 

mechanism, in all materials, as is visual by the necked cross section, at flow, of a ductile iron 

rod.   
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