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1. Introduction  
 

Strength and material properties of wood, as viscoelastic material, are time and tempera-

ture dependent and only can be described by the theory of molecular deformation kinetics. 

Therefore, time dependent behavior of wood is non-linear and the “viscous” strain rate fol-

lows the sinus-hyperbolic law of the initial stress.   

The basic concept of this, general applicable, fundamental theory is to regard plastic flow 

as a matter of molecular bond breaking and bond reformation in a shifted position, what is 

the same as to state that flow is the result of a chemical reaction like isomerization, thus 

changing not the composition, but only the bond structure of molecules. Damage occurs 

when not all broken side bonds reform, providing the sites for a damage process. The theo-

ry applies for all materials with a correlation close to one, for all test-results on each spec-

imen, thus test-results on the same structure, (as 

should apply for large number statistics of molecu-

lar behavior). An example of such a precise fit is 

given in fig. 1 of the stress decrease and density 

increase at annealing, discussed in Section B.3. 

Separate creep curves e.g. of each specimen, of 

your tests, thus will show such precise fit which 

you should publish in that way.  

The applied general theory, developed in B(1989a), 

is discussed here. This theory is based on the limit 

analysis equilibrium method and is, as such an ex-

act approach, which is able to predict all aspects of 

time dependent behavior of materials by the same 

constitutive equation and may explain the phenom-

enological laws in this field. Further, possible sim-

plifications could be derived, in order to find the 

main determining molecular processes.  

Fig. 1. Annealing, see Section B.3  The mathematical derivation of this general  

 rheological theory is solely based on the reaction   

equations of the bond-breaking and bond- reformation processes at the deformation sites 

(i.e. spaces where the molecules may move into) due to the local stresses in the elastic ma-

terial around these sites. The model doesn't contain other suppositions and only show the 

consequences of the stated starting point. The form of the parameters in the rate equations, 

which determine for instance the hardening and the delay time, are according to the general 

equilibrium requirements of thermodynamics. By expressing the concentration and work 

terms of the rate equation in the number and dimensions of the flow units, the expressions 

for the strain rate, fracture, hardening and delay time are directly derived without any as-

sumptions. To obtain simplifications, series expansion of the potential energy curve is ap-

plied, leading to the generalized flow theory, thus to a proof of this general flow model, 

and showing the hypotheses of this generalized theory, to be consequences of the series 

expansion. This theory thus applies generally, also for structural changes, giving an expla-

nation of the existing phenomenological models and laws of fracture. The theory is further 

able to explain the different power models (of stress and of time), giving the physical 

meaning of the exponents and constants. This applies for instance for the explanation of 

the Forintek model of the strength and the Andrade and Clouser creep-equations.  

An explanation of the WLF-equation (Williams-Landel-Ferry is WLF) for glass transition 

and time-temperature equivalence above glass-rubber transition was derived in B(1998a), 

but the theory is extended in B(2010). Therefore the WLF-derivation of B(1989a) is not 
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discussed, but the correction, by extension to an important new vision, given in B(2010) 

and in final form, in a separate next Section B.3: “Theoretical derivation of the WLF- and 

annealing equation”.   

It is shown that a single non-linear process explains the measured, broad, nearly flat me-

chanical relaxation spectra of glasses and crystalline polymers and an outline of the total 

relaxation spectrum for wood can be explained by two processes in stead of the assumed 

infinite number of linear viscoelastic processes (which don’t exist). Also the loss-spectrum 

by forced vibrations and fatigue behavior is explained by only one process. The non-

existence of any spectrum follows from the zero-relaxation test (see § 8).  

The solutions of the model equations are given for transient processes at different loading 

histories and it is shown that the model also is able to explain phenomenological laws as 

for instance the linear dependence of the stiffness on the logarithmic value of the strain rate 

in a constant strain rate test; the logarithmic law for creep and relaxation and the necessary 

breakdown of the law for longer times; the shift factor along the log-time axis due to stress 

and temperature and the influence on this factor of a transition to a second mechanism and 

the long delay of  this second process. As an application of the model, a derivation of the 

mechano-sorptive effect was given in B(1989a) to explain the behavior at moisture cycling 

for any cycling history. The derivation throws a new light on the mechanism, being a sepa-

rated sorption effect due to at the same time relative shrinking and expansion of two adja-

cent layers. The experimental research of B(1989a) was therefore based on cycling humidi-

ty conditions to determine this always present influence on activation energy parameters.    

 

 

2 Structure and mechanical properties of wood  
 

2.1. Structure of softwoods  
 

Timber can be defined as a low-density, cellular (tubular), polymeric fiber composite [1], 

[2]. The macro structure is cellular and due to the branches of the tree, there are knots as 

main disturbances of the structure.  

On microscopic level, most cells are aligned in the vertical axis and only 5 to 10% are 

aligned in the radial planes (rays). These rays are the main disturbances of the alignment of 

the vertical cells. In softwood two types of cells are available. The greater number are tra-

cheid and have a supporting and conducting role. Most cells of the second type, the paren-

chyma, are in the rays and are block-like cells having a function for food storage. The tra-

cheid are thin walled in early-wood and are thick walled in latewood). The cells are inter-

connected by pits (holes in the cell wall) to permit food passage and these holes are the 

main disturbances of the structure of the cell walls.  

Chemical analysis shows four constituents: cellulose, hemicelluloses, lignin and extrac-

tives. The cellulose molecule is not folded and there is no evidence of primary bonding 

laterally between the chains. The laterally bonding between the chains is a complex mix-

ture of fairly strong hydrogen bonds and weak van der Waals forces. The length of the cel-

lulose molecules is about 5000 nm (0.005 mm). The crystalline regions are only 60 nm 

(length) by 5 nm (width) and 3 nm thickness. Thus the cellulose molecule will pass 

through several of these regions of high crystallinity with intermediate non-crystalline or 

low-crystalline zones. The collective unit passing the crystallites is termed micro-fibril, 

having an infinite length. It is clothed with chains of sugar units (other than glucose) which 

lie parallel, but are not regularly spaced making the micro-fibril to about 10 nm in breadth.  

Hemicelluloses and lignin are regarded as cementing materials. Hemicelluloses is a carbo-

hydrate like cellulose, however the degree of crystallization and polymerization (less than 
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150 units) are low. Lignin is a complex aromatic compound composed of phenyl groups 

and is non-crystalline; 25% is in the middle lamella (the intercellular layer composed of 

lignin and pectin) and 75% is within the cell wall.  

Thus the cell wall is a fiber composite with slender micro-fibrils as fibers in a cementing 

matrix of relatively un-oriented (amorphous) short-chained or branched polymers (lignin 

and hemicelluloses) containing also tiny voids and second order pore spaces.  

The cell wall also is a laminated composite because of the layered structure of the wall. To 

be distinguished are in succession: the middle lamella, a lignin-pectin complex without 

micro-fibrils; the primary wall with loosely packed random micro-fibrils and the secondary 

wall with closely packed parallel layers. The outer layer or S 1 layer of this secondary wall 

is thin (4 to 6 lamellae) with 2 alternating spiral micro-fibrils with a pitch to the longitudi-

nal axis of about 60 degree. The middle layer or S 2  layer is thick (30 to 150 lamellae) with 

fibrils in a right-hand spiral with a pitch of about 20 degree and the inner layer or S 3  layer 

is very thin and is similar as S1  with a pitch of about 80 deg., is however looser and con-

tains lignin in a high proportion (see Fig. 2.1). Because there are 2 cell walls between the 

adjacent tracheid, a micro-fibril angle deviation from the longitudinal axis in a layer is 

compensated by the opposite angle in the equivalent layer of the second cell wall causing 

the orthotropic behavior and the stiffness and strength at an angle to the grain follow the 

common tensor transformation laws. Thus the behavior of a tracheid alone is far from or-

thotropic and the results of tests on separated tracheid, as done for the paper industry can-

not be used to predict the behavior of wood.  

 

 
 

Fig. 2.1. Wall layers with orientation of microfibrils  [1] 

 

 

2.2 Rheology of wood  
 

2.2.1 Discussion of the general applied phenomenological approach [3] 
 

Just like other materials, is time dependent behavior of wood nonlinear and has to be ex-

plained by the theory of molecular deformations kinetics, [17], B(1989a). As first expand-

ed, this behavior is regarded to be linear elastic when stress, moisture content, temperature 

and testing time are sufficiently low, or to be linear viscoelastic at some higher levels of 

these variables. Phenomenological, the creep compliance therefore is separated into instan-
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taneous, delayed elastic, and flow components. The instantaneous or glassy compliance is 

always regarded to be independent of stress. The delayed elastic and flow compliances are 

regarded to be approximately independent of stress below certain stress limits depending 

on time, moisture content (m.c.) and temperature. Mostly this limit is taken between 40 to 

50 % level, depending on testing time. These limits are also regarded to be the boundaries 

below which there is only decelerated creep and above which there is, after decelerated 

creep, stationary creep and accelerated creep. However, wood is a cross-linked polymer 

and, stationary creep, thus creep at a constant strain rate, cannot occur. Accelerated creep 

is due to a structural change process, (the same equation applies e.g. for annealing), what 

will be discussed later. Nonlinear behavior is not only evident by structural changes. This 

also follows from the "irrecoverable" flow, which still can be recovered by an increase of 

m.c. and or temperature. This behavior is explained by the time-stress equivalence follow-

ing from nonlinear viscoelastic behavior providing a very stiff "dashpot" for the low inter-

nal stresses after unloading, making recovery very slow and thus showing a quasi-

permanent strain. Repeated stressing may lead to stiffening, shown by a decrease in hyste-

resis and an increase in elastic modules (by crystallization). However, at sufficient high 

stress, a structural change process may dominate (at common testing times), which causes 

an increase of the glassy compliance. Transitions of processes at higher temperatures and 

m.c., are discussed in Section B.2: “Transformations of wood and wood-like polymers”.  

Outer the superposition of time and temperature and time and stress, is simple superposi-

tion of time and moisture content not valid because of other structural changes (shape and 

volume) associated with the change of moisture content. As generally known, absorption 

of water in wood causes swelling up to a m.c. of about 28%. The swelling is roughly pro-

portional to the water uptake. Although water enters only in the amorphous zones, the 

strength and stiffness are reduced. The tangential shrinkage exceeds the radial shrinkage 

partly by the restraint of the rays. The swelling and shrinkage in longitudinal direction are 

very small compared with the other two directions. It is the smallest for steep micro-fibril 

helixes in the S 2  layer as can be expected in the direction of the crystalline micro-fibrils. 

Swelling of the secondary wall is much higher than swelling of the middle lamella. Thus 

the latter restrains the shrinkage of the wood causing high internal stresses. The planes, 

which are the richest in hydroxyl groups, lie parallel to the micro-fibril surface and part of 

the non-crystalline material is oriented in parallel with the cellulose and this material is 

accessible to water. Thus the planes between the lamellae of the cell wall are the places for 

bond breaking processes due to water movement. In fact the cell wall acts as one layer for 

dry wood and the S 2  layer is split in hundreds of lamellae in the saturated stage. It is to be 

expected that the high restraints for swelling and shrinkage will cause "flow" in the gel-like 

matrix. This flow is directed when a specimen is maintained under stress during a change 

in moisture content. The moisture movement through wood involves breaking of stressed 

hydrogen bonds and reformation of these bonds in an unstressed position causing the large 

creep deformation at desorption when one of two adjacent layers shrinks, while the other 

swells (with respect to the total stress free expansion movement). This mechanism deter-

mines the behavior at cycling moisture content conditions (the mechano-sorptive effect). 

There is an increase of creep during desorption and recovery during the first, or for tension 

also possible in the second absorption period, depending on the initial moisture content. At 

high stresses and small moisture content changes there is no recovery but a reduction of the 

creep rate during adsorption. The deformation is usually divided in three components: 

overall shrinkage by moisture change; time-dependent strain by the stress history and the 

mechano-sorptive effect. The same can be said for temperature changes. There is further an 

interaction influence of temperature and moisture content if one of these cycles. As stated 

above these interaction effects are not real interactions but can be explained as conse-
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quences of the differential swelling and shrinkage of adjacent layers. This is shown and 

calculated in B(1989a): “Theoretical explanation of the mechano-sorptive effect in wood” 

and in § 7.3.2. The sorption influence is, for a single change, linear with the amount of 

moisture change, independent on m.c., temperature, rate of sorption and previous creep-

history, indicating a flow process. The rate of deformation is dependent on the rate of 

change of moisture content. The moisture gradient is not the cause of the increased defor-

mation (there is no influence of the size of the specimen). As explained by the model, a 

stepwise increase in moisture under loading gives a maximal deflection at the first mois-

ture increase and the deformation at changing moisture conditions is not much dependent 

on the loading, at not too low, and not too high, loading levels. There is no decrease in the 

modulus of elasticity (thus no damage).  

 

2.2.2. Viscoelastic structural behavior in comparison with other polymers 

 

Cellulose molecules are very long and have very short side chains and are able to be 

packed close together forming crystalline areas. Hemicelluloses have different forms be-

tween the linear structure and the very strong branched structure. The linear form with not 

regular spaced short side chains and many polar hydroxyl groups has, as celluloses, good 

fiber forming properties and the branched type has good entanglement and filler properties. 

Lignin is cross-linked in all directions and is able to form strong bonds with the celluloses 

and has also hydroxyl groups. Cellulose is highly crystalline (~ 70 %) and the crystallinity 

doesn't change much on straining or drying. Because of the physically side bonds (hydro-

gen- and van der Waals bonds) it is to be expected that the binding energy will be time- 

and temperature dependent. However the deformation of a crystallite is energy elastic (rep-

resenting displacements from equilibrium positions) and time dependent behavior is only 

noticeable in the amorphous regions. The modulus of elasticity is 1.1 10 5  N/mm 2  in chain 

direction and about 10 4  N/mm 2  perpendicular to this direction. The amorphous regions of 

the cellulose are highly oriented and will have many cross-links (hydrogen bonds). Be-

cause there is no "coiling" structure, an uncoiling process cannot be expected to occur.  

The branched hemicelluloses polymers have the function as filler of the lignin and because 

the strong bonds with the lignin it increases the cross-linking, acting as copolymer. The 

linear hemicelluloses acts by hydrogen bonds as flexible bridge between the micro-fibrils, 

making movements of the fibrils possible and avoiding stress peaks between fibrils on 

loading. Lignin is a random amorphous cross-linked polymer that is able to form strong 

bonds with the polysaccharides. Real rubbery behavior (uncoiling) thus is not possible.  

Thus the polymers in wood, which determine the time dependent behavior, contain densely 

cross-linked filled amorphous polymers as well as highly crystalline and oriented poly-

mers. Although such polymers don't possess a zone of rubber-like behavior, there is a tran-

sition possible to a more flexible state (e.g. by the possible shifts of the micro fibrils with 

respect to each other).  

Crystalline polymers with the amorphous region in the flexible state (above the transition 

temperature of these regions) normally show a quick stress relaxation loosing 25 to 50 % 

of the stress in a few minutes. This is followed by a slow process and the remaining stress 

after 17 decades (the age of the universe) is above 5 to 10 %, as follows from the time-

temperature equivalence. Thus this stress reduction of about one order is much less drastic 

than that for the rubbery transition where the stress reduces 5 to 6 orders. However this 

quick relaxation mechanism is not measured for wood, even not at high temperatures, sug-

gesting a very high cross-linking. Thus the slow process is dominating in wood (at low 

stresses) and has the same properties as for other crystalline and cross-linked polymers. 

This means that creep is recoverable; that increase of stress shortens the retardation time 
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(crystalline materials) and that the creep rate is more than linear proportional to the stress 

at higher stresses with the consequence that the creep and recovery functions have different 

shapes. The temperature dependence of the viscoelastic properties follows the WLF- or the 

Arrhenius equation. The WLF equation applies to wood components as lignin but not to 

the copolymer  wood. The Arrhenius form applies for cellulose. Because the crystallinity 

doesn't change much, there are no vertical shifts (due to change of the pseudo equilibrium 

modulus) of the creep lines along the log- time- axis. The creep was described in the past 

by the Andrade-equation and is mainly a straight line on a log-time-plot. This mechanism 

is attributed to the mobility of the short strands in the amorphous regions, probably due to 

co-operative motions of groups of strands coupled through linkage points. The thermal and 

mechanical history is very critical for the behavior, as applies for glasses, and also traces of 

diluents have an influence.  

At room temperature the amorphous parts in wood are in the glassy state, and only the so 

called  mechanism appears (the mechanism represents the glass-leather transition 

due to mobility of the back-bones of the polymers). The   or secondary mechanism is 

due to local readjustment of side groups in glassy amorphous polymers or in the amor-

phous strands of crystalline polymers. These side groups can be, chemically attached 

groups, or hydrogen bonds, which act as side group on the polymer chain and even can be 

only polar water molecules. In this last case the  mechanism disappears on removal of 

water. Dielectric measurements support this model because they reflect dipole orientation 

due to side group motions, showing the same temperature dependence as the visco-elastic 

behavior. This temperature dependence follows the Arrhenius equation and the activation 

energy lies between 20 and 30 kcal/mole. For the stress reduction in relaxation by the sec-

ondary mechanism is a factor 0.5 used as a rule of thumb for wood. The same as for the 

mechanism, is the behavior nonlinear and the properties only can be explained by the 

molecular deformation kinetic theory.  

 

 

2.3. Strength and time dependent behavior  
 

2.3.1. Factors affecting the strength  
 

The influence on the strength of the native origin of wood, determined by the character of 

the soil, climate, density of the forest, etc. is not important, because the variability within 

one area is comparable with the variability of the whole population.  

The main features of the macro-structure, which determine the strength, are the density, 

moisture content, width of the growth rings and width of the latewood part of those rings. 

Disturbances also have influence. The main disturbances of the structure are the knots, de-

viations of the grain angle, compression wood, resin channels, growth defects and checks. 

Because timber is selected for structural use, larger disturbances by cracks, resin heaps, 

growth faults, etc. are excluded and only minor disturbances are allowed having a little 

influence on the strength. Compression wood will cause twisting and splitting due to dif-

ferential shrinkage by seasoning and also serious grain angle deviations may cause twist-

ing. Thus by selection, this timber will not be used for structural applications and it appears 

that, for gross wood, the regression of the strength is nearly totally determined by only the 

knot area, the density and the moisture content (see e.g. the discussion in [4]).  

Knots act similar like holes and the strength dependent on the KAR (knot area ratio) can be 

fully explained by the stress field around a hole [5].  

An increase in moisture content in wood gives a reduction in strength by the weakening of 

the inter -chain hydrogen bonds of the cellulose components in the amorphous regions. 
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The moisture effects will be explained later by the chemical reaction kinetics of this water 

binding. At a moisture content of about 28% there is no further reduction of the strength 

and also no further increase in swelling of wood.  

There is a very general correlation between strength and density also when comparing dif-

ferent wood species. The amount of latewood is highly correlated with the density. This is 

not so for the total ring width. Thus the density of early-wood varies in every ring. Because 

of the correlation of the strength with the density, it can be expected that mainly the late-

wood part determines the strength. This can be true if there is early plastic flow in the ear-

ly-wood transmitting the stresses to the latewood. This also explains the higher magnitude 

of the tensile strength of the individual fibers compared with gross wood. In gross wood 

early crack formation occurs at imperfections between the layers due to stress concentra-

tions. Because there is sufficient overlap of the adjacent fibers, these cracks have to propa-

gate through the clear wood layers for total fracture where the amount of latewood deter-

mines the strength.  

Measurements in tension of wet early wood and late wood single fibers, indicate a 1.1 to 3 

times higher ultimate strength (at about the same ultimate strain) and stiffness of the late 

wood fibers (from the same species) [6]. In [7] higher differences between early-wood and 

latewood were measured. Dry late wood was about 6 x stronger than early wood, closer to 

the theoretical expectation and wet late wood was about 4 x stronger, indicating more in-

fluence of plasticity for wet wood. It was also found that the ultimate strain for failure of 

latewood was higher than for early-wood. Preparation of single fibers test-specimens will 

always induce cracked surfaces with the possibility of crack propagation, diminishing the  

strength differences between early and late wood. Probably this explains the differences of 

the measurements of [6] and [7].  

Elastic models of the mechanical behavior of cell wall layers (e.g.[8]) indicate a much 

worse loading of springwood in comparison with summer-wood. The maximum stress par-

allel to the micro-fibril is about 4 times higher and the stress perpendicular and the shear 

stress is about 7 times higher in springwood than in summerwood. This indicates early 

plastic flow in the cell wall layers of the springwood with considerable stress redistribu-

tions between the layer components because else, the relatively high experimental strength 

of this layer cannot be explained.  

The summerwood fiber has an almost ideal stress pattern in accordance with the strengths 

of the different constituents and can be expected to behave elastic up to high stresses, mak-

ing probably a description possible by an elastic model of the cell wall strength. Thus,  

whatever the mode of failure is, the strength is close to the fiber strength. Such elastic 

model for the tensile strength of the cell wall, [9], indicates that fracture first occurs in the 

S 1  layer by a shearing mechanism with a very high shear stress at failure, suggesting a 

strong bonding between lignin, hemi-cellulose and cellulose. This initial fracture of the S 1  

layer follows also from the theory of maximum energy of distortion (which is shown in 

A(2009) to apply also generally for wood). The model further shows opposite signs of the 

shear stresses in the S 1  and S 2  layers, indicating also high stresses in the interface between 

the S1  and S 2  layers. Microscopic studies have confirmed this interlayer fracture by the 

pulling out of the S 2  and S 3  layers out of the enclosing sheet of the S 1  .  

As second type of failure, helical break along the direction of the S 2  micro-fibrils was ob-

served leading to the ultimate rupture of this layer.  
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2.3.2 Mode of fracture  
 

Failure of wood is dependent on the type of stress. The cleavage behavior of wood was 

studied by fracture mechanics tests on notched samples (e.g.[10]). The strain-energy re-

lease rate depends on temperature and moisture content and there is a dominating stability 

of crack extension. The slow and stable crack propagation was mainly within the cell wall 

of the tracheid, either between the primary and S 1  walls, or between the middle lamella 

and the primary wall and was moving through the middle lamella to the adjacent cells. 

Thus the cell lumina were not in general exposed. Besides stable crack extension, rapid 

fracture was possible mainly initiated at a discontinuity in orientation of the tracheid such 

as the points were the ray cells cross the line of tracheid. At higher temperatures and mois-

ture contents, wood is less brittle because there is more viscous dissipation and unstable 

cracks are more infrequent and short in length.  

Tension tests along the grain on gross wood show mostly failure within the fiber walls ra-

ther than between fibers (p.e. along the S 2  microfibrils). The overlap of the adjacent cells 

where the force is transmitted by shear in the middle lamella is thus in general sufficient 

long. As mentioned before, failure is possible between the S 1  and S 2  layers.  

Tensile failure perpendicular to the grain follows, as in cleavage tests, the radial plane as 

preferred plane. Both transwall failure, which goes through the cells and the lumen, and 

intrawall failure, which occurs normally within the zone of the primary wall and S1 , are 

possible. An increase in temperature (0 to 150 0 C) resulted in a high reduction of the ten-

sile strength perpendicular to the grain and a reduction of trans-wall failures, indicating a 

reduction in bond strength between adjacent cells.  

In compression parallel to the fiber direction, lines of buckling appear which make an an-

gle on the tangential face of the specimen of about 60 degree to the axial direction, which 

lie in the radial direction. This is a consequence of shear failure between adjacent cells and 

the angle of 60 deg. in stead of 45 deg. is due to anisotropy. The failure takes place within 

the cell wall and only occasionally does separation occur along the middle lamella mostly 

in the regions adjacent to the rays. The existence of microscopic cracks is visible as loos-

ening of the bonding between micro-fibrils and the implication is that the lateral cohesion 

between micro-fibrils of the secondary wall is less than between cells [11]. In [12] and [13] 

it is mentioned that rupture occurs at the cellulose-lignin interface (because of the preferen-

tially staining with lignin stains).  

Besides bond rupture (as follows from the increased chemical reactivity with dilute acid) 

micelle distortion occurs. There is a sequential development in types of dislocations (being 

permanent crinks of the fibrils) with increasing stress. Trust lines, being local thickenings 

of the cell wall by small fibril deformation, develop into slip planes which grow to bands 

of slip planes (creases) leading to failure with considerable buckling and delaminating of 

the cell walls. Slip planes develop at about 25% loading level and the number increases 

about linearly with stress level. At a level of about 50 to 65% creases (bands of more than 

2 slip lines) are formed increasing parabolic with stress level. At 80 to 100% level, gross 

buckling of the cell walls occur containing about 40% of the total failure strain.  

The development of these micro-failures is related to time at a given stress level. At rela-

tively high moisture content, or when deformations develop slowly at low stress levels, the 

micro deformations are widely distributed through the specimen. Creep tests on wood 

show that after long time, depending on the stress level, the deformation may increase at a 

higher rate indicating the development of creases after long times.  

At low moisture contents and rapid stressing at high stress levels the micro deformations 

are fewer in number and localized preferentially at rays.  
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For high compression perpendicular to the fiber direction, wherefore the modulus of elas-

ticity of about one-tenth of the modulus in longitudinal direction, side-ways distortion of 

cells occur. The whole shape of the cell changes. When failure does take place separation 

occurs between the layers S 1  and S 2  of the secondary wall. The greater strength in radial 

direction than in tangential direction is due to support from the rays.  

 

2.3.3 Failure of the ultra-structure  
 

Two components of the fine or chemical structure have a profound influence on the 

strength and stiffness. The first consists of matrix material, the lignin-hemicellulose com-

plex, and the second is the cellulose fiber material. Wood behaves as a reinforced material. 

To investigate the failure mechanism of the cellulose chains, Ifju [7] reported the effect of 

reducing the cellulose chain length by gamma irradiation. The degree of polymerization of 

the cellulose was reduced from 5000 down to about 200 by successive higher doses of ra-

diation. If slippage of the chains is a cause of failure it can be expected that there will be a 

critical chain length where below failure is caused by slippage and where above failure is 

by primary bond breaking of the chain itself and is independent on the chain length (thus 

independent of the degree of polymerization). Based on an assumed very high activation 

energy of breaking of the -C-O-C- linkage and a very low activation energy of breaking of 

the lateral hydrogen bonds it was calculated that this critical length is reached at a degree 

of polymerization of about 70. The experiments however did show a decrease of the 

strength at any reduction of the degree of polymerization. The conclusion that slippage at a 

degree of polymerization of 5000 is between micelles or fibrils through the "loosely" 

amorphous cellulose (with very few side bonds) is surely not right, because this expected 

long range interaction would indicate an early occurrence of rubbery behavior. The stiff-

ness is however not proportional to the absolute temperature, as is necessary for rubbery 

behavior, and also the transition with temperature is different (Arrhenius equation) and the  

molecular models show only a very localized slip of about a cellobiose unit.  

Thus the basis of the calculated critical chain length is more complicated than assumed. 

This can be seen by the bonding model of cellulose of Giles as e.g. discussed in chapter 4 

of [8] where a special type of bonding is assumed in order to explain the high experimental 

stiffness of cellulose.  

 

 
 

fig. 2.3 Scheme of a cellulose chain linked by hydrogen bonds  

 

Straightening of the cellulose chain causes lateral stretching of the hydrogen bonds causing 

a four- to six- fold stiffness increase of the chain. Thus, if a chain is stretched, the hydro-

gen bonds may fail, reducing the stiffness of the chain and thus the stress on the chain. If 

within the crystalline region 4 successive hydrogen bonds have failed, the maximum re-

duction of the force is reached. The activation energy for this will be less than 4 x 6 = 24 

kcal/mol, while for primary bond breaking the activation energy will be about 60 to 80 

kcal/mol. This doesn't mean that a type of dislocation propagation by cooperative bond 

breaking of 4 bonds is the necessary failure mechanism. Also possible is e.g. the breaking 
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of 1 hydrogen bond with a rotation of 4 to 5 bonds of the glucose-rings (activation energy 

less than: 6 + 5x3.2 = 22 kcal/mol, to relieve a high chain force. Also for other polymers 

the flipping of the ring between two isomeric chair forms, is supposed to be a deformation 

mechanism. There is steric possibility for this movement [14] in cellulose. This mecha-

nism, of breaking of one hydrogen bond, is in accordance with the measured first order 

reaction and the measured activation energy and volume of the bond breaking. Further the 

in [7] measured dependence of the strength on the logarithmic value of the degree of 

polymerization (being a measure of the logarithmic value of the numbers of cuts of the 

chain or the number of sources of dislocations) can be explained now by the in [1] devel-

oped molecular model. As shown later the flow-stress is:  

 1

1 2 1 2 1
ln ln C ln D

A A'

   
         

      
  

where   is the strain rate in a constant strain rate test, A = A’  = exp( -E/kT) is pro-

portional to the flow unit density  , and D is the degree of polymerization being inversely 

proportional to the number of cuts, and thus inversely proportional to  . This leads to the 

expression:  

1 1

2 2 2

D1
1 ln

D

 
    

   
 

By regression analysis, it can be shown that 21/  is constant, independent of temperature 

and moisture content and is about 0.11 for latewood and 0.17 for early-wood (coefficient 

of variation: 0.45). The values of this constant, 21/ , indicate a different failure mecha-

nism by irradiation than occurs normally in wood (showing values of about 0.03).  

The change in molecular arrangement in the ordered, crystalline regions of the micelles by 

loading can be measured with the X-ray diffractometer [15]. Truly elastic behavior is due 

to chain straightening, orientation of crystallites or reorganization of the less ordered re-

gions. Constant loading tests in tension show immediate orientation by loading and no in-

crease in crystallinity with time (within 24 hours). Because X-ray diffraction shows only 

ordered regions of molecules, these regions only show elastic behavior. The alignment by 

loading gives some increase of the length of the crystallites and thus of the degree of crys-

tallinity. At unloading (independent of the loading time) some alignment remains, indicat-

ing also some plasticity, increasing with increasing stress level (some of the new bonds 

recover at a not noticeable low rate by the low internal stress after unloading).  

Time dependent molecular orientation activity in the amorphous regions can be observed 

by the infrared polarization technique. This was done in [16] for balsam fir tissues strained 

parallel to the fiber axis. The chosen adsorption bands in [16] contained no crystalline band 

with almost immediate orientation representing the elastic behavior. Thus the recorded 

bands gave the activity in the amorphous regions. In the chosen bands for lignin, hemi-

cellulose and cellulose, only quick time dependent processes of orientation were recorded. 

The main slow stress relaxation process was not given. The explanation, given in [16], of 

the short periodic processes of loading and unloading as a result of the ability of the lignin 

network to act as an energy sink and to control the energy set up of the stressing is not 

probable. Obvious all components will be loaded on quick straining and because of the 

shorter retardation time of the lignin, the stress will be transmitted from the lignin to the 

cellulose chains instead of in the reversed direction. More probable is therefore that a type 

of dynamic crystallization occurs like in metals. Also in partly crystallized polymers this 

may occur if the degree of crystallinity increases during the straining. Thus a process of 

crystallization, flow and recrystallization may occur. A strong indication for this supposi-

tion is that the time of the process is dependent on the kinetics of crystallization and not on 
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the rate of straining or the viscoelastic properties and also that the stress of the relaxation 

test decreases during the orientation because like in the mentioned polymers the crystalli-

zation lowers the stress on the ends of the amorphous strands. This mechanism is however 

of minor importance, and need not be described, because the crystallization process in 

wood is very small so that it results only in a small wavy form of (or around) the main 

stress relaxation line. It can be concluded that there is a lack of the measurement of the 

main slow overall relaxation by this method.  
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3. Discussion of the basic principles of the theory of molecular  
 deformation kinetics  
 

3.1 Introduction  
 

For plastic flow in a material, it is necessary to have "holes" into which the material may 

move, and a lowered energy potential (energy barrier) by the presence of this hole (with a 

bond strength of about a quarter of the bond strength in a perfect region for all materials). 

Thus the number of mobile molecules or mobile segments are determined by the number 

of these holes (called flow units).  

 

 
Fig. 3.1. Energy surface across an edge dislocation  

 

The rate of flow is determined similarly as the chemical reaction rate of bond breaking and 

some aspects of this theory will be discussed to clarify the physical meaning of the con-

stants of the basic equations that will be used for the derivation of a creep and damage 

model. The starting points on the reaction order, thermodynamics of the free energy 

change and parameters of the flow units are derived for use in the derivations of the next 

chapter 4.  

 

3.2 Theory of reaction rates for plastic deformation in solids.  
 

The basic concept of this theory is to regard plastic flow as a special form of a chemical 

reaction (like isomerization, where the composition remains constant but the bond struc-

ture of the molecules changes), because flow is a matter of molecular bond breaking and 

bond reformation in a shifted position.  

An elementary form of the reaction rate equation is: 

2 1
1 f 2 b

d d
C C

dt dt

 
         (3.2.1)  

where   is the concentration of flow units, that may be kinks and holes in the polymers or 

vacancies and dislocation segments in the crystalline regions.  

 C exp E / kT    (where   is a frequency) with:  

E= the activation energy  

k= Boltzmann's constant  

T= the absolute temperature  

Because there is a forward reaction into the product state and a backward reaction into the 

reactant state, there are two rate constants:  

 f fC exp E / kT    (3.2.2)  
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 b bC exp E / kT     (3.2.3)  

The molecules occupy equilibrium positions and are vibrating about the  minimum of the 

free energy potential. Every position of the molecules with respect to each other deter-

mines a point of the potential energy surface. The molecules must reach an activated state 

on this potential surface in going from the reactant to the product state. The thermal energy 

is not equally divided among the molecules and it is a matter of chance for a molecule to 

get high enough energy to be activated and to be able to break bonds.  

The explanation of the form of the rate constants 
iC  above is given by Bolzmann statistics.  

C = (kT/ h)exp(-E/ kT),  

  = kT/ h can be approximated to the Debye frequency (about 1310 ) being the number of 

attempts per second of a particle to cross the barrier of height E. However, any attempt 

only succeeds when the energy of the particle exceeds E, and the probability of a jump per 

second is: P = .exp(-E/ kT), where kT is the mean vibration energy of the particles (in 

that direction). Mostly not one group of reacting atoms is considered but a molar quantity. 

The molar free energy then is m mE N E  and the Boltzmann constant k is replaced by the 

gas constant R, where R = mN k  and mN  is Avogadro's Number. Thus:  

E /(kT) = mN E/( mN kT) = mE /(RT).  

k 5 18.616 10 eVK      

h 154.135 10 eVsec     

k/h 10 1 12.084 10 sec K      

R 1 11.9616 cal K mol      

mN 236.02 10   

1 Joule = 1Nm = 190.618 10 eV 0.239 cal     

 

 
Fig. 3.2. Potential energy change for an elementary reaction [1].  

 

The free energy of the activated complex consist of an enthalpy term, an entropy term and 

a work term due to the applied stress (see 3.4).  

When the molecules are displaced from their equilibrium positions by an applied stress, the 

potential energy is increased. This means that the potential energy surface is changed, 
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making the reaction more probable, decreasing the barrier height with fW  in forward di-

rection and increasing the barrier height with bW  in backward direction, where  

W= fW  + bW  is the work of the external constraints. Thus:  

'

f f
f

kT E W
C exp

h kT

  
  

 
 (3.2.4) 

'

b b
b

kT E W
C exp

h kT

  
  

 
 (3.2.5)    

 

3.3 Reaction order of deformation and fracture processes. 
 

The first order reaction applies for solids, as is theoretical derived in § 2.4.1 of B(2005), 

also given in Section B.2: “Transformations of wood and wood like polymers”. This is 

experimental confirmed for all processes in wood. This shows that there is one speed de-

termining step and that there are no mechanisms with intermediate products.  Further, the 

slightly lower value of the order than one, at higher concentrations, indicates that series 

reactions are acting (and not concurrent reactions).  

Based on these results it is possible and convenient to obtain general solutions of the often 

complex reactions of transformations, by a sinus series expansion of the potential energy 

surface (as is discussed in Chapter 4). Based on the symmetry conditions of the orthogonal 

components there is a not changing, thus steady state, intermediate concentration in the 

successive steps causing a behavior like one elementary symmetrical reaction for each 

component. Even for the most complex reactions of decomposition of wood at high tem-

peratures, the first order reaction applies, according to the “generalized flow theory”, de-

rived in Chapter 4 which is verified empirically in [2]: (with: W = weight loss; eW  = re-

sidual weight):  

 i i edW / dt k W W      (3.3.1) 

The determining (slowest) bond breaking processes must be of first order in this case, be-

cause the overall reaction has an order close to one (at the highest rate), as follows from 

theory and from thermographic experiments [3].  

 

 

3.4 Thermodynamics  
 

The thermodynamic system is chosen to be a small volume around the dislocations (i.e. 

around the deformation- or fracture- site). This volume is surrounded by elastic material 

containing the effective stress (applied and internal stresses), and the temperature depend-

ence of the elastic constants of this surrounding material has to be regarded separately.  

The local internal stresses   at the sites act as external stresses on this closed system. The 

first law of thermodynamics, for a closed system, can be given in the differential relation 

of the change of the internal energy U of a process at constant pressure P, temperature T 

and stress  .  

dU =  Q - PdV +  W,  (3.4.1)  

where  Q is the heat absorbed by the system; PdV is the work against pressure P by an 

increase of the total volume dV, and  W the other reversible work done by the system.  

dQ = TdS is the change of entropy S by changes in volume, vibration spectrum and seg-

ment orientation.  W can be split here in the work done by the constant external stress  , 

by a jump d  of a segment at activation, shifting the volume with Ad  (A is the area of 
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the cross section of the segment) and by other work terms. Thus: W  Ad .   

Eq.(3.4.1) can now be written:  

dU - TdS + PdV = Ad . (3.4.2)  

In this equation is dU + PdV = dH called the change of enthalpy H, and dH - TdS = dG is 

called the change of Gibbs free energy G, both under conditions of constant P and T. Thus 

eq.(3.4.2) becomes:  

dG =  W,  (3.4.3)  

making it possible to calculate G for an assumed mechanism. For a process in which 

only work is done by pressure, or  W =0, eq.(3.4.1) gives:  

dH =  Q, or H = Q.  (3.4.4)  

Thus for a process at constant pressure the heat exchanged between the system and the sur-

roundings is the difference between the initial and final enthalpy of the system. A further 

consequence of eq.(3.4.4) is that the heat capacity at constant pressure pC  is:  

p

P P

Q H
C

T T

   
    

   
  (3.4.5)  

or:  

p

P

H
C

T

 
   

 
  (3.4.6)  

Thus, the change of the heat of a reaction is directly related to the differences between the 

heat capacity of the products and that of the reactants (Kirchhoff's law), and depending on 

the sign of PC , the reaction is exo- or endothermic. If PC  = 0, the reaction is thermally 

neutral.  

Because the energy change of a system, passing from one state to another, is independent 

of the particular course followed, the reaction may be split in different chemical steps if 

pressure, temperature and crystalline form are the same (Hess' law). The same can be done 

with other state properties e.g. volume or energy. As a consequence of this law, it is possi-

ble to expand the total potential energy curve into sinus series, as is done in the next chap-

ter. Except for the first expanded term, this results in parallel rows of symmetrical barriers. 

Because, at zero stress, the forward and backward activation energy is the same for each 

barrier of the row, the reaction is neutral and the enthalpy change is constant independent 

of the temperature for the total row and because, at constant temperature and pressure, 

 PC T S / T 0     , is also the entropy change S  constant during passage of the row. 

Thus the row acts as one process with a specific enthalpy and entropy, (both independent 

of the temperature) and with a specific activation volume.  

If mass is added to the, above mentioned, closed system, for instance by absorbing mois-

ture, the energy equation (3.4.1) becomes for zero W :  

dU =  Q - PdV +  d ,  (3.4.7)  

where   is here the relative moisture content, or   = 1 at saturation of all bonds, and   is 

the chemical potential or d  is the change of the internal energy by saturation with water.  

To find the potential energy change for a single process, thus without structural changes 

and other variations of the energy, a general thermodynamic potential E can be chosen in 

the determining variables T,   and  . The pressure P doesn't perform work for flow at 

constant volume and can be regarded to be constant.  

dE = d(H - TS - A   -  ) = dH - TdS - SdT - A d  - A d  -  d   -  d   (3.4.8)  

At equilibrium, or when P, T,  and   are constant, dE = 0, or:  

0 = dH - TdS - A d  -  d   (3.4.9)  

giving the first law of thermodynamics. Subtraction of eq.(3.4.9) from eq.(3.4.8) gives:  
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dE = - SdT - Ad -  d  = 
E E E

dT d d
T

  
   

  
,   (3.4.10)  

being the second law.  

As seen before, the enthalpy and entropy are constant with respect to T, (at zero stress), 

and thus  E/ T is constant, and E is linear in T (by ST).  

From the Maxwell relations: 2 2E / T E / T      , and so on, it can be found that:  

S
A

T

 
  
 

;     A
 


 

;      and     
S

T

 


 
. (3.4.11)  

If now the potential energy curve E, as function of   (T,   constant), is replaced by an 

equivalent straight line, then, in the first expression of eq(3.4.11) is dS/d  constant, inde-

pendent on   and T. Then S or E is linearly dependent on   giving:  

S = 1 2f ( ) f ( )    ,  (3.4.12)  

and the stress   will be, according to this first Maxwell relation:  

A = 1 3Tf ( ) f ( , )     (3.4.13)  

Because E has the form: E = - ST + 4f ( , ,T)  ,  

E = 1 2 4Tf ( ) Tf ( ) f ( , ,T)         (3.4.14)  

Also E has the form: E = 5A f ( , ,T)    ,  or:  

E = 1 3 5Tf ( ) f ( , ) f ( , ,T)        .   (3.4.15)  

Because eq.(3.4.14) and eq.(3.4.15) has to be identical, E has the form:  

E = 1 3 2Tf ( ) f ( , ) Tf ( ) C          (3.4.16)  

where C is a constant. This equation satisfies the other Maxwell relations of eq.(3.4.11) 

and can be written:  

E = C 2A Tf ( )   .  (3.4.17)  

Thus E is linearly dependent on  ,   and T. The value   is a function of   and can be 

linearly dependent of T.  

 

To determine the relations of  , E can be regarded as function of the variables:  

 ,   and T, or:  

dE = - SdT - A d  -  d ,  (3.4.18)  

giving the Maxwell relations: 

S
A

T

 


 
;     A

 


 
;      and     

S

T

 


 
.  (3.4.19)  

The expansion of wood with moisture content is linear, thus d /d  is constant and   is 

linear dependent on  . Also is   linear dependent on T, (indicating a constant thermal 

expansion coefficient of   up to activation). Thus d /dT is linear with   and also dS/d  

and S. Further also   is linear dependent on  ,   and T, the same as S.  

It is now shown that E can be assumed to be linear dependent on,  ,T and  .  

E = 1 2 3 4 5 6 7 8a a a T a T (a a a T a T)         ,  (3.4.20)  

and the energy change on activation has the same form:  

E  1 2 3 4 5 6 7 8a a a T a T ( a a a T a T)           .   (3.4.21)  

This can be given by a stress independent change of enthalpy H' and entropy S' denoted by 

a slash ', and a stress dependent part according to::  

aE H' S'T V       (3.4.22)  

where aV  is the activation volume A.  

Leaving out the   sign, because misunderstanding is not possible, is further used:  
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E = H' - S'T - aV  = E' - aV  = E' - W,  (3.4.23)  

In this equation is, with the moisture content  :  

0 mH' H /   ,       0 1 mS' S S /    ,        a 0 m 1 m 2 3 mV V ( / ) VT / T V V T / T      ,  

where mT  is a scaling temperature and m  the moisture content of saturation.  

This thermodynamic law for activation parameters applies necessarily for all processes.  

From tests of [4], it can be deduced that, for fracture processes, 1 1H S 0   and aV  is con-

stant with respect to T for 0  (see later). Thus 3V 0  in that case.  

 

3.5 Parameters of the flow units  
 

For choosing an equilibrium system, as a limit analysis equilibrium solution, the reaction 

equations have to be expressed in the dimensions of the flow units. The total applied exter-

nal stress: t e    , where e  is the stress on the elastic material of the cross section 

and   the stress on the mobile sites of the cross section (to be found by curve fitting).  

If a segment is moving upwards, the hole 2  in fig.3.5 is moving downwards. The activa-

tion volume V is 2  times A, and the work, when moving over a barrier, of one unit is:  

f  V/2 = f  A , where f is the stress on the unit and A is the area. This can be expressed in 

the part of the mean stress on the flow units   in the material by:   = N.f.A where N is 

the number of elements per unit area. Thus the force per element, is the force per unit area 

divided by the number of elements per unit area. 1  is the length of the flow segment or 

the distance between flow-points. Thus the concentration of flow units   being the number 

of activated volumes per unit volume, can be written: 1N2 A /    . 

 
Fig. 3.5 Moving space  
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4. Derivation of a creep and damage limit analysis theory based  
 on the theory of deformation kinetics  
 

4.1. Introduction  
 

In this chapter the mathematical derivation is given of a general creep- and damage- model 

that is solely based on the reaction equations of the bond-breaking and bond-reformation 

processes at the deformation sites due to the local stresses in the elastic material around 

these sites. The model doesn't contain the hidden suppositions of the other known models 

and is able to explain the phenomenological laws.  

 

4.2. Basic reaction rate equations.  
 

In this paragraph the reaction rate equations of [1] are given with all the steps of the deri-

vation in order to see the modifications made in 4.3 to derive a generalized flow theory.  

Most models are based on the simple form of the reaction rate equation eq.(3.2.1) (for acti-

vation over a single potential energy barrier):  

Rate = 1 2 1b 1f2
1 1f 2 1b

1f

C / Cd
C C

dt 1/ C

 
     (4.2.1) 

being a poor approximation of eq.Fout! Verwijzingsbron niet gevonden. and 

eq.Fout! Verwijzingsbron niet gevonden. and will lead to variable activation parameters 

in different circumstances.  

This is the case, because for larger, noticeable, plastic deformations, the reaction occurs 

over a system of energy barriers and systems of consecutive and parallel barriers have to 

be regarded.  

For a two barrier system (fig.4.2) there is an intermediate stage of units being in steady 

state concentration. Thus:  

 2
2 2f 1b 1f 1f 3 2b

d
0 C C C C

dt


        (4.2.2) 

The net numbers of units crossing the two barrier system is thus:  

Rate = 1 1f 3 2b
2 2f 3 2b 2f 3 2b

2f 1b

C C
C C C C

C C

 
     


  

        = 
   

 

   



1 3 1b 1f 2b 2f

1f 1b 1f 2f

C /C C /C

1/C C / C C
 (4.2.3) 

 
fig. 4.2. Two consecutive barriers [1]  
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For each obstacle i we have:  

 
   

 

i
i i

kT E
C exp

h kT
  (4.2.4) 

or:  





 
  

 

i 1,f ibib

i 1,f

E EC
exp

C kT
  (4.2.5) 

and:  

  
       

2,11b 2f 1b 1f

2,f 1,f 2,1

EC E E Eh h 1
exp exp

C C kT kT kT kT C
  (4.2.6)  

Similarly:  

     
    

  

1b 2b 1f 1b 2b 2f 1

1f 2f

C C E E E E E
exp exp

C C kT kT
 (4.2.7)  

Thus the rate becomes: (with E = E' - W)  

Rate = 

 
 

    
 



'
1 1

1 3

1,1 2,1

E W
exp

kT
,

1/C 1/C
 (4.2.8) 

    

with:  

 
    

 

'
1,1 1,1

1,1

E WkT
C exp

h kT
 (4.2.9) 

 
    

 

'
2,1 2,1

2,1

E WkT
C exp

h kT
   (4.2.10) 

and  

       
        ' ' ' '

1
1f 1b 2b 2f

E E W E W E W E W   

                     ' ' ' ' '
1f 1b 2b 2f 1b 1f 2b 2f 1 1E E E E W W W W E W   (4.2.11) 

              ' ' '
2,1 1f 1b 2f 1f 1b 2f

E E E E E W E W E W  

               ' ' ' '
1f 1b 2f 1f 2f 1b 2,1 2,1E E E W W W E W   (4.2.12) 

1,1 1fC C   

In the same way is for n obstacles in series:  

 

 

 



 




1 n 1 1
n n

i,1
i 1

exp E / kT
Rate

1/C

  (4.2.13)  

with:  

 
   

 

i ,1
i,1

EkT
C exp

h kT
  (4.2.14)  

For m processes parallel:  
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 

 

 





 




m
1 n 1 1

m,n n
j 1

i,1
i 1

exp E / kT
Rate

1/C

( )   (4.2.15)   

 

4.3. Derivation of a general creep- and damage- model by series 
  expansion  
 

The general equations can be simplified to suitable forms for solutions of the rate equa-

tions as will be shown in the following.  

It is possible to expand the total potential energy curve into (Fourier-) series and regard the 

process as a parallel acting system of symmetrical consecutive barriers. 

Except of the first term, (see fig. 4.3.1) which is only symmetrical at loading to 0W , (see 

eq.(4.3.14), is in all series 

1E' 0  (see fig.4.2) and because of the symmetry of the barri-

ers in the series, all i ,jE 's and all i ,jW  's are equal.  

 
 

fig. 4.3.1 Series approximation of E'  

 

By eq.( 4.2.9):   1,1

kT E' W
C exp

h kT

 
   

 
   (4.3.1)  

By eq.( 4.2.10): 2,1

kT E' 3W
C exp

h kT

 
   

 
 (4.3.2)   

Eq.( 4.2.14) becomes: 
 

i ,1

E' 2i 1 WkT
C exp

h kT

  
   

 
  (4.3.3)  

Thus:  

 





     
                

      
  


i ,1

1 1 1 1 1
....

C kT E' W 3W 2i 1 W
exp exp exp exp

h kT kT kT kT

  

 
3 2i 1

1 1 1 1
....

kT E' W W Wexp exp exp exph kT kT kT kT



 
 
      
                                  
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   

  

2i

2

1 1
1

exp W/ kT exp W/ kT1

kT E' 1 1/ exp W/ kTexp
h kT

   
    

       
        

 
 

 

  
 

    
1

1 exp 2iW/ kT1

kT E' exp W/ kT exp W/ kTexp
h kT



  
   

       
 

 

             
 1 exp 2iW/ kT

kT E' W
exp 2 sinh

h kT kT

 


      
       

      

       (4.3.4) 

The rate is from eq.(4.2.11) and (4.2.13), with '
1 1 1 1E E W W 2iW         :  

         
 


       

 
 

1 n 1 exp 2iW / kT 2 kT / h exp E'/ kT sinh W / kT
Rate

1 exp 2iW / kT
  

        
   

      
  

1

kT E' W
2 exp sinh .

h kT kT
  (4.3.5)  

Equilibrium (Rate= 0) is only possible for W= 0 for these barriers and from symmetry of  

f bE E E  , 1  has to be equal to n 1 . 

Calling: 1/((κkT/ h)exp( - E'/kT)) = it , the relaxation time of the i-th expanded term,  

eq.(4.3.5)  can be written like a chemical reaction equation:  

n 1 1 i

i

d d 2 W
sinh

dt dt t kT
    
    

 
   (4.3.6)     

Now the work W, of a flow unit with area 2 3   moving over a barrier over a distance 

2 , is (see § 3.5):  

2 3W f f V/ 2 /N        ,  

where V is the activation volume and N is the number of activated flow units per unit area. 

The concentration of flow units, or the number of activated volumes per unit volume, is:  

      2 3 1N 2 / .  

Eq.( 4.3.6) can now be written (with    i i
/ NkT ):  

 2 3 2 3
i i

1 i 1

N 2Nd
sinh .

dt t

     
    

  
 (4.3.7)   

or, for a constant structure, by constant 2 3N   , this becomes:  

 i i
1 i 1

d 2
sinh

dt t

  
    

  
, (4.3.8)   

or because 1/   is a plastic strain  :  

   


         0
i i i i'

i i

'd 1
sinh sinh

dt t t
,  

with the apparent relaxation time ' '
i i 0t t /    ( '

0 1   is assumed for cellulose materials). 
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Thus eq.(4.3.6)  gets the form for no structural change:  

 i i
i

1
sinh

t
    . (4.3.9)   

The form of the first expanded term of the series (see fig. 4.3.1) should be symmetrical for 

the expanded W. Thus from eq.Fout! Verwijzingsbron niet gevonden.:   
''
1b 11f 1

1 n 1

E WkT E W
Rate exp exp

h kT kT


    
           

    

  (4.3.10)   

For a creep process, it may be expected that the rate is zero for no external force (equili-

brium) or 1W 0.  Thus eq.(4.3.10)  becomes:  

''
1b1f

1 n 1

EE
exp exp

kT kT


  
        

   
 (4.3.11)   

and eq.(4.3.10)  can be written:  
'
1f 1

1

kT E W
Rate 2 exp sinh

h kT kT

   
        

  
  

or:   1 1
1

1
sinh

t
     (4.3.12)   

For structural changes, as in crack propagation, the crack extension force must overcome 

the thermodynamic ”surface” energy. Further energy is needed to change the material near 

the crack surface (the new surface contains more defects) and to fracture strong ordered 

areas of bonds, crossing the surface, that cannot be broken by thermal activation at normal 

temperatures. Thus, calling these energies 0W , the crack is in an equilibrium state with 

zero velocity when W = 0W . Eq.(4.3.10) then gives:  

' '
1f 0 1b 0

1 n 1

E W E W
exp exp

kT kT


    
         

   
   

and eq.(4.3.10) can be written:  
'
1f 0 1 0 1 0

1

E W W W W WkT
Rate exp exp exp

h kT kT kT

       
              

     
 

         
'
1f 0 1 0

1

E W W WkT
2 exp sinh

h kT kT

   
        

  
 (4.3.13)   

or, for a steady state process ( 1  ≈ constant):  

1 0

1

W W1
sinh

t kT

 
    

 
 (4.3.14)  

with:  
'
1f 0

1
1

E W1 kT
exp

t h kT

 
     

 
                  

' '
1f 1bE EkT

exp
h 2kT

  
     

  

  

and:  

     ' ' ' '
0 1f 1b 1 n 1 1f 1bW E E / 2 kTln / E E / 2       .  

For higher stress levels is:  

     1 0 1 0sinh W W /kT 0.5 exp W W /kT    .  
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and:  
' '
1f 0 1 0 1f 1E W W WkT kT E W

exp sinh exp
h kT kT 2h kT

       
             

    
  

   
'
1f 1kT E W

exp sinh
h kT kT

   
       

  
  

This is assumed for the next equations.  

If there are different kinds of flow units acting together, the total applied stress is the sum 

of these components. Thus:  

i
i

     

where i  is the part of the total stress acting on the i-th group of units.  

With i i iW     is:  

 i
ii

1
arcsinh t   


 ,  

or:  

 ii

i ii

arcsinh tt

t


 

  
  (4.3.15)  

For the terms with it 1   is:  i iarcsinh t / t 1    

and for terms with it 1   is:  i iarcsinh t / t 0   .  

Thus there remain a limited number of terms:  

 i
i i

i i

t 1
arcsinh t


  

   
   (4.3.16)  

The first term of (4.3.16) can be expressed in a mean value:  


 

 i i i
1

i i

x t x
t    

 
 i i

1 1 1 1 1 1
i i

x t 1
t t x t x /   (4.3.17) 

and eq.(4.3.16) gets the form of the generalized flow theory [1] consisting of separate 

symmetrical elements:  

    
  

     

2 33 31 1 2 2

1 2 2 3 3

arcsinh t arcsinh tx tx t x t

t t
  (4.3.18)  

Thus, by series expansion, the assumptions of this generalized flow theory have now been 

proven:  

a) The flow unit spectrum exists as expanded terms and may be approximated by a limited 

number of elements with distinct average relaxation times. (As experimentally found 

[2], less than 3 groups are sufficient for a description of most materials).  

b) The deformation rate of all units is the same (in accordance with the observations that 

there are no structural changes due to rate differences during flow).  

The first term of eq.(4.3.18) represents Newtonian behavior. The others are non-

Newtonian, or Newtonian in the low strain rate range.  

The physical meaning of the expansion of the potential energy curve is to regard the total 

process as a result of parallel acting simple processes. For instance, a dislocation may meet 

different kinds of obstacles and the mean waiting time per obstacle at the end of the  pro-

cess is the mean of the waiting times at the different obstacles. At higher stresses these 

waiting times may change differently for the different obstacles and the apparent activation 

energy and volume may be stress dependent. Expansion means that groups of dislocations 

are supposed to meet only one type of obstacle. Each group meets another type of the same 
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obstacles in succession, resulting in a number of parallel acting simple reactions. In ele-

mentary reactions, (as the damage process in wood) the activation parameters (enthalpy, 

entropy) are constant (for temperature) as follows from thermodynamics § 3.4, so that a 

simple description of the total rate process becomes possible.  

 An experimental verification (by relaxation tests) of this behavior follows from [3] for 

metals. Those metals that where described with single barrier mechanisms, often had a 

stress dependent activation energy or volume. This was not the case for the metals which  

 
fig. 4.3.2 Viscosity-strain rate relation [1]  

 

were described by two (thus more than one) parallel symmetrical barriers. The enthalpy 

and entropy were also constant, (as follows from thermodynamics theory given in § 3.4).  

The same has be done for wood by preliminary tests of B(1989a) and for cotton in [4] (that 

has a similar structure as wood). The two symmetrical barriers had constant, stress inde-

pendent activation parameters.  

 

4.4. Basic equations for fracture. 
 

Eq.( 4.3.18) applies for the steady state process, (as creep) when the structure and bond 

density do not change. Crack initiation and propagation occur when the rate of bond break-

ing exceeds the rate of bond re-establishment, leading to structural changes. For this case, 

eq.(4.3.6) does not lead to the constant structure eq.(4.3.8), but takes the form:  

    
 

    1 1 r

d N 2N
sinh

dt t NkT
,        ( 4.4.1)  

where the change of N may be due to primary bond breaking. If 1  can be regarded as a 

constant length of the flow segment, as can be expected if there is no change in flow unit 

density, then N can also be interpreted as the number of bonds along the flow segment and 

a change of N will be the change of the number of bonds along the segments. Thus N or   

may change in eq.( 4.4.1) whether bond density changes (N) or change in free volume ( ) 

is expected to cause fracture. Both models give the same results because eq.(4.4.1) is for 

constant   0  (and decreasing N), according to eq.(4.3.6):  

 
  

 

01 1

r 1

dN 2N
sinh

dt t N kT
,  

or: 

   
  

 

1 0

1 r 1

d 1 /N 1 2
sinh

dt N t N kT
        (4.4.2)  
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For constant 


 1 n 1N N N  and variable, increasing  , eq.(4.3.6) leads to:  


  

 
 

n 1 1

r 1

dN 2N
sinh

dt t N kT
 

or:  

   
 

 r

d 2
sinh

dt t NkT
         (4.4.3)  

Thus, eq.(4.4.2) in 1/N is exactly the same as eq.(4.4.3) in  . The choice is thus possible to 

regard   as a constant (as done for crystals and metals, (where   is taken to be equal to 

the Burger's vector) or to take N as constant (when slip of the chains is expected to cause 

failure).  

A third possibility for fracture is the change of 1  (by the part of the change of bond densi-

ty along the segment or change in flow unit density that doesn't decrease the stressed area). 

Then eq.( 4.4.1) becomes:  

   
  

  

1

1 r

d 1/ 1 2
sinh

dt t NkT
         (4.4.4)  

In the following it will be shown that both models eq.(4.4.2) and eq.(4.4.4) may give the 

same results. So that the simplest equation (4.4.4) can be used for applications.  

Because fracture occurs at higher stresses, eq.(4.4.2) can be written:  

   
    

  

0 01 1 1

r 1 r 1

dN 2N N
sinh exp

dt t N kT t N kT
,       (4.4.5)  

or for constant stress  :  
 







  
    


0

1
11 f

11
r/N kT 1

dN t
exp N

kT tN
        (4.4.6)  

where ft  is the lifetime of the specimen subjected to a constant stress. The integral, in 

eq.(4.4.6), is the exponential integral:   iE x  reducing for larger values of the variable to:  

  
  

 

0
i

0

exp /N kT
E

NkT /N kT
,         (4.4.7)  

Thus eq.(4.4.6) becomes:  

   
     

   

0 0
f r

0 0

N kT N h E'
t t exp exp

N kT kT N kT
,     (4.4.8)  

or:  

 
 

  
 

0
f

0

N h E'
ln t ln

kT N kT
        (4.4.9)  

In the same way eq.(4.4.4) can be integrated:  

  




   
    

 

1m

10

1/

10f
1

r 0 1m1/

t
d ln 1 / exp ln

t N kT
,      (4.4.10)  

or:  

   
    
   

10
f

1m 0

h E'
t ln exp

kT kT N kT
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or: 

   
    

          

10
f 0

1m 0 0

h E' E'
ln t ln ln ln t

kT kT N kT kT N kT
    (4.4.11)  

giving the same form as eq.(4.4.9). Eq.(4.4.11) gives a strain criterion for failure:  

 
 
  

10
0

1m

h
t ln

kT
           (4.4.12) 

or:  

   
  

   

10 m
0

1m 0

kT
exp t

h
.         (4.4.13)  

From tests [5] it is found that 0t  in eq.( 4.4.11) or eq.( 4.4.9) has a definite value for the 

many materials tested, being the reciprocal of the natural oscillation frequency of atoms in 

solids. It is seen that 0t  is not constant in eq.( 4.4.9) being the error of integrating with a 

constant (mean value) 1 . This error diminishes when T approaches zero as can be seen in 

eq.( 4.4.13):     1 1m  when T   0.  

It follows that the bond breaking model in this form, changing only the value of N, only 

applies near absolute zero temperature for small values of E'  and  0/ N  (because 

  0 0E' /N h / t  for T   0), and thus for wood, which shows higher values of E' and 

 0/ N , there will be always changes in 11 /  at failure.  

To show the amount of change of N and, 11 /  eq.( 4.4.1) can be written:  

         
   

   

1

1 r 1 r

d /N 2
sinh exp

dt N t NkT N t NkT
    (4.4.14)  

      
  

 

1

r

d ln( / N) d ln(1 / ) 1
exp

dt dt t NkT
_     (4.4.15)  

 
   

  
 

1

r

d ln(1 / ) 1
1 A exp

dt t NkT
      ( 4.4.16)  

where A is the mean value of: _ 

 
 





1d ln(1 / ) / dt

d ln( / N) / dt
 and: A = 0, when 

1  is constant.  

  
   






 

  
f

0

t

r/N 0

d ln / N dt

exp /NkT 1 A t  
 
 

 

f
1

0 r

t
E

N kT 1 A t
 

 
 

  
   

0 f

0

exp( / N kT) t kT E'
exp

/N kT kT1 A h
       ( 4.4.17)  

Or with   01 / t :  

 
  

  
 

f

0 0 0

tE' 1 kT
exp

kT N kT t h N kT1 A

 

 
         

f

0 0 0

tE' kT 1
ln ln

kT N kT t h N kT 1 A
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According to the measurements, see fig. 4.4.1, is, with kT / h 1,  

 

  
    

  0 0

1
ln 0 ln(1) 1 A

N kT N kT1 A
     ( 4.4.18)  

Because  0/ N kT  (≈ 34) >> 1 for wood, is: A >> 1 and the change of 11 / dominates 

the change of N, and N may be regarded as constant when a maximum strain condition is 

used for the end state.  

The improbable results of the bond breaking model eq.(4.4.9) shows that the change of N 

will be different. It is seen, that eq.(4.4.8) and eq.(4.4.11) contain 0N , the constant initial 

value of N and not a variable value of N. Thus the result of the process is not influenced by 

the path followed and it is possible to regard steps in the total process where 11 /  changes 

at constant 0N , followed by a step where 11 /  is constant and N changes. These steps 

may be infinitely small. Then ft  according to eq.( 4.4.11) will be shortened by the bond-

breaking process according to eq.( 4.4.8), and the time to failure is determined by the dif-

ference of the times of both processes. The result of the subtraction of both equations 

gives:  

    
            

10 0
f

1m 0

N hh E
t ln exp

kT kT N kT
.  

Thus for this case:  

 
  
   

10 0
0

1m

N hh
t ln

kT
,    or: 

  
 

  

10 0 0

1m

kTt N kT
ln

h
 

and it follows that there is a necessary ultimate strain condition for failure, determined by 

the point where all bonds are failed. Because the value of 0kTN /  is small for wood, 

there is a minor difference with the strain condition eq.( 4.4.13).  
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fig. 4.4.1 Stress and temperature dependence of the lifetime for some materials [5]  

 

The derivations above are based on the relatively small initial value of  1/ N . Wood and 

other structural materials also may show (at high local stress in the end state) a dominating 

process with a high initial value of  1/ N  which doesn't change much with respect to the 

initial value, (thus determines a zero order reaction) and it is possible to regard a mean val-

ue of  1/ N  in the right hand side of eq.( 4.4.14). Integration then gives:  

 

 
fig. 4.4.2 Lifetime of the bonds [8]   fig. 4.4.3 Long term strength  

 

1 r 10 0 0

d
exp

dt N t N N kT

    
  

   
           ( 4.4.19)  

f

1 r 10 0 0 10 0

t
exp

N t N N kT N

   
 

   
      

10 0 f

1 f 10 0 r 0

N t kT E'
exp

N N t h kT N kT

     
     

     
   

f 0 f f

0 0 f 0 0

E' t N t
ln ln 1 ln ln 1

kT N kT t N t

     
          

    
     ( 4.4.20)  

According to fig.4.4.1, the left term of this equation is equal to:  f 0ln t / t  leading to 

f 0N 0.5N , as experimentally found for fracture (i.e. the crack length is about the crack 

distance, or the intact area has reduced to 0.5 times the initial area when instable crack 

propagation starts). This leads to the small crack merging model of fracture mechanics of 

Section C, which explains the measured mode I and mode II final softening behavior.  

Because 1/   is a strain, it is also possible to interpret this as an ultimate strain condition 

f 0/ 2    for a slip model. This slip model is the same as discussed in 4.3. In [6] this 

model was used and as has to be expected from the derivations above, it was found that a 

maximum shear strain condition has to be applied. This was compared by other tests [7] 

with the bonding-fracture model. Both models gave almost the same results as can be ex-

pected from the derivations above.  

 

 

4.5. Fracture at constant loading rate and at creep loading  
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Numerical integration of the bond breaking eq.( 4.4.2) [8] for constant loading rate is given 

in fig. 4.4.2, showing also the possibility to account for a constant value of N during the 

lifetime. This was also shown in § 4.4 and it is sufficient to use eq.(4.4.4). For a constant 

loading rate t   (with .   = constant) this equation is:  

 

  1

r

d ln 1/ 2 t
sinh

dt t NkT

  
  

 
        (4.5.1)  

or:  10 f f

1m r r

2NkT t NkT t
ln cosh 1 exp

t NkT t NkT

       
      

      
  

for higher stresses. With 
f ut    this is:   

10

1m

h E
ln ln

kT NkT kT NkT

   
     

   
        (4.5.2)  

Thus: 

10

1m

h E
ln ln

kT NkT kT NkT

   
     

   
 

10
f

u 1m

NkT h E
ln t ln ln

kT kT NkT

    
      

      
  u

0

E
ln t

kT NkT

 
     (4.5.3)  

This equation is the same as eq.(4.4.11). Thus the short-term failure time st  is equivalent 

to a creep failure at level u  and life-time ct :  

c s

u

NkT NkT
t t  

 
  

The normalized creep strength  creep strength divided by the short-term strength s ) is:  

 
f

0 f c f

s s cc c

0 0

E' N NkT t
ln

t ln t / t NkT t
1 1 ln

tE' N NkT t E' t
ln ln

t kT t


 

         
          

    

      (4.5.4)  

For wood, eq.(4.5.4) is one line (see e.g. [9]) for different wood species, moisture contents, 

stress states(bending, shear, compression etc.) and types of loading, indicating the common 

strength determining mechanism determined by molecular deformation kinetics.  

Another reason is possibly that there is one common strength determining element. This 

then will be the cellulose because the structure of cellulose is the same for all species. 

Thus s / NkT n    has to be constant, independent of the density and moisture content. 

According to thermodynamics, § 3.4, applies for the strength of wood polymers: 

 '

0 0 0t t exp S / k   and E' H' S'T   with 0H' H c    and 0S' S b   , giving:  

 0 f 0NH Nc Nb T NkTln t / t              (4.5.5)  

Extrapolation of eq.(4.5.4) to   = 0, at f f ,mt t , shows that f ,mt  is constant because ct  is 

constant. Because st  is a chosen time of the constant short term strength, is c st t / n  also 

constant. Extrapolation of eq.(4.5.5) to   = 0 gives:  

 '

0 fm 0NH NkTln t / t Nc Nb T      

Because the left side of this equation is independent of the moisture content c and b must 
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be zero (Thus there is equilibrium for the stress independent part of the free energy due to 

equilibrium of moisture content ' 'H T S    ).  

The measured value [9] of the slope of the line, eq.(4.5.4) for t ≈ 3 sec.,(and not too long 

lifetimes at 20 
0
C) is:  

 

    
s

ss

d / NkT 1.03 1

17.1ln 10 38.2d ln t

 
  
 

.  

Thus: sn 38
NkT

 
             (4.5.6)  

This is comparable with the measured value of [10], if the equation is transformed to the 5 

min. strength, giving the right measured value of 34 then.  

As shown before, the main influence of a change of the content is the change of the activa-

tion volume of wood, which is shown to be linear dependent on the moisture content   as 

confirmed by tests in [11].  

Eq.(4.5.5) can now be written:  

    u u 0 0,1 0 f 0T T NH' NkTln t / t               (4.5.7)  

in accordance with § 3.4 and the data of [11]. See fig. 4.5.2, where the modified activation 

volume V = / N  is given.  

A first estimate of the numerical values of 0T  and 0 mC /  in:  

 0 0

0 m

V
1 C T T

V


  


         (4.5.8) 

are: (taken from the picture of [11] without the possibility of correction of the times to 

failure, that are not given and are probably not the same in all tests):  

0T 265K  and 0 mC / 0.145  .  

With these values, the lines in fig. 4.5.1, given by eq.(4.5.7), are:  

 

 
 

'

f 0

u

0 0 0

m

HN NkTln t / t 193 0.35T

1 0.145 T 265
1 C T T

 
  

    
   

 

     (4.5.9)  

showing that the straight line for 0 , as well as the curved line for 0.3 , can be giv-

en by one equation.  

If it is assumed that the time of the short term tests is about 10 minutes, giving an equiva-

lent step strength of about 20 sec, then:  

   13

0NR / ln 20 /10 0.35  , or: 0NR /   = 1.06 10
-2

 and the enthalpy is:  

H' = 193 0 / N  = 193∙1.987.10
-3

/1.06.10
-2

 = 36 kcal/mol.     (4.5.10) 

n = 0 / NRT   93/( 1.06.10
-2

.293) = 30.       (4.5.11)  

According to [9] and [11], '

0 0t t , or S' = 0 is assumed.  

The form of the equation of V = / N  indicates a transition temperature of:  

0T  = 265 K = - 8 
0
C.          (4.5.12) 

Below this temperature is V = V0 for tension, in agreement with the reported values of the 

tensile strength in [12] at low temperatures showing no influence of temperature and mois-

ture content. For dry wood, 0 , this transition disappears(and is not noticeable at low 

m.c.). Information about the mechanism that is determining for compression at low tem-

peratures can be obtained by a fit of the measured values of e.g. [12]. The steep descent of 

the strength curves for m  , indicates a small value of 0 / N  and therefore 0 / N  can 

be neglected as a first approximation. (For T   0, this is not allowed).  
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With 01/ N T / N   , eq.(4.5.2) becomes with m  :  

' m 1
u 0

m 1 m 1

H' N Nk
ln t

T Nk

   
    

     
        (4.5.13) 

or scaled with respect to 20 
0
C or 293 K (Kelvin):  

' m 1
u 0

m 1 m 1 m 1 m 1

H' N Nk H' N H' N
ln t

293 Nk T 293

  
      

        
 

u,20

u,20 1 m

H' N 1 1
1

T 293

 
           

        (4.5.14) 

 

 
fig. 4.5.1 Compression strength of oak [11]  fig. 4.5.2 Activation volume  

 

 

From the data of [12], the compression strength parallel to the grain of saturated wood is, 

(see fig. 4.5.3):  

u

u,20

1 1
1 845

T 293

 
   

  
.  

Thus: 

u,20 m 1

H' N
845

  
             or:             

u,20 m 1

H' N
2.88

293


  
 

Eq.(4.5.3) becomes:  
'

u 0 u

f

kT t
1 ln

H' N H' t NkT

   
  

 
  

'

0

f

1 2 0.29 t H'
1 ln

2.88 H' t 2 0.293 2.88


   

  
   (4.5.15) 

giving a value of H' of about 30 kcal/mole, (if 13

0 ft / t 10 / 600  is a reasonable estimate). 

For dry wood, / N  is constant and eq.(4.5.4) is nearly a straight line with respect to T 

because the influence of the temperature on ct  is small in the ln-function (see fig. 4.5.4). 

The enthalpy H' is about 36 kcal./mol, as found before.  
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fig. 4.5.3 Saturated wood  fig. 4.5.4 Dry wood  

 

 

 

4.6 Power approximation of the rate equations.  
 

As shown in 4.3, a range of successive processes can be given by eq. (4.3.5):  

Rate = 
1

kT E' W
2 exp sinh

h kT kT

   
     

  
        (4.6.1)  

or for higher values of W (thus for higher stresses, in the neighborhood of 1 ):  

0

W
exp

kT


    

 
        1 1

1

exp 1
NkT NkT NkT NkT

      
     

  
   (4.6.2)  

The experimental power equation, as used in fracture mechanics, is:  
n

1 1

 
 

  
.          (4.6.3)  

This can be written similar to eq.(4.6.2.), for high enough stresses:  
n

1 1

1 1 1 1

1 1 n 1 n 1
       

        
     

       (4.6.4)  

Thus:  1n
NkT

 
           (4.6.5)  

It is shown in § 4.5 that 1 / NkT   is constant (for constant T), but is dependent on the 

scaling (i.e. the choice of the 1-sec.-strength or the 5-min.- short term strength). It is now 

shown that the empirical power form of the rate equation (4.6.3), is identical to the theoret-

ical expression for activation over consecutive barriers if n is not too low, see also 

eq.(5.3.8). If there is a lower bound of stress 0 , where flow can be ignored: 0  , then 

the effective stress 0 , has to be taken in eq.(4.6.3).  

Structural changes can be given by adding a linear term in   in eq.(4.6.3). This is in con-

formity with dislocation mobility studies and other experiments. Then eq.(4.6.3) becomes:  

 
n

0

1

C B
 

    
 

          (4.6.6)  

For wood two main processes act at longer times:  

   
n m

0 0
1 1 2 2

1 1

C 1 B C 1 B
   

        
   

      (4.6.7)  
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In the first process then, the term 1 1B C   is small and for the second process 2 2B C  domi-

nates and eq.(4.6.7) becomes:  
n m

0 0
1 2 2

1 1

C C B
   

     
   

        (4.6.8)  

Because the damage   is proportional to the plastic deformation  , this can be written:  
n m n

0 0 0
1 3 1 4

1 1 1

d
C C C C

dt

       
         

      
     (4.6.9)  

where the constant mean internal stress   acts in the second process. Then eq.(4.6.9) is the 

damage model of [13]. For creep-to-failure tests (  = constant), a fit of the data of [13] 

gives n = 36 assuming 0 0  . For 0 0.48   , n = 34 is found in [10], giving about the 

same value of n. This is in accordance with the previous mentioned values (eq.(4.5.6)) con-

firming this interpretation of the power law.  

Short term behavior is also determined by two main processes, as follows from the exper-

iments of [14], where two values of n are given: n ≈ 62 for controlled crack growth tests, to 

n ≈ 65 in constant strain rate tests, and n ≈ 30 in constant (high) load tests to failure. In 

other experiments also values of n = 25 to 39 are mentioned. The variable value of n shows 

that more than two processes are acting at the same time and 2 values of n should have 

been found. Analyzing the creep values of [15] in [16], the existence of two parallel barri-

ers was clearly demonstrated. The quick process had a high internal stress (forward activa-

tion only) and an activation energy of approximate 50 kcal/mole. The slower process was 

approximately symmetrical and had an activation energy of about 21 kcal/mole.  

The activation energy of this process is comparable with values found in [17], where from 

creep tests at different temperatures for bending: H'= 22 kcal/mole to 24.4 kcal/mole, de-

pending on the temperature range, have been found. From normal-to-grain relaxation tests 

23 kcal/mole was reported for wet beech-wood in [18]. This energy is often regarded to be 

the energy of cooperative hydrogen bond breaking. The activation energy of 50 kcal/mole 

is high enough for cooperative C-O--bond or C-C-bond rupture.  

The estimated value of H' of about 36 kcal/mole in 4.5, may be the result of a mixture of 

primary and secondary bond breaking at the same apparent activation volume.  

Because the density of the cell wall is about 1.6/.35 times higher than the mean density of 

wood, an estimate of the real stress on the sites is:  

f = (1.6/.35)∙20 = 90 N/mm
2
, and for n = 30 is,:  

20 18 3

2 3 30 kT / f 30 1.39 10 293/ 91 1.347 10 mm           .   

Thus   is of the order of: (1.347.10
-18

)
0.33

 = 1.1.10
-6

 mm = 1.1 nm, or 1 cellobiose unit (see 

fig. 2.1.2). Processes wherefore n ≈ 60, thus may indicate an extend of the process to 2 cel-

lobiose units. 

Additional derivations of the theory of paragraphs 3, 4 and 5 are given in [19] to [24].  
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5. Solution and discussion of the derived model-equation for  
different loading paths  

 

5.1 Introduction  
 

In 4, the mathematical derivation of a creep and damage model is given, solely based on 

the reaction equations of plastic deformation at the deformation sites and the transmission 

of stresses by the surrounding elastic material. Hereby, only the end state or the flow pro-

cess is regarded where there is no more internal elastic stress redistribution among the par-

allel processes and only the last strength determining process has an influence. To describe 

the whole creep and damage history, the change of the elastic stresses on the sites has to be 

regarded.  

This leads to the following equations (with an elastic part e  and a viscous part v ):  

    i
ei vi i i i i i i i

i

d
A B sinh 1 C

dt K

 
                (5.1.1)  

This can be visualized by a parallel system of Maxwell elements, where i  is the stress on 

element i; vi  is the strain of the non-linear dashpot and iK  is the spring constant. The 

terms with iB  and iC  give the structural changes. It appeared that i iC   is very small and 

can be neglected. Thus hardening is not due to this term but is due to the influence of the 

parallel processes and i  has the form of i M    , where M is proportional to the 

spring constants of the parallel elements and i iM C    . Thus M is measured in stead of 

a possible iC . The term i i iA B   represents the always occurring first order reactions. iA  

applies for high, hardly changing concentration, acting as zero order reaction. i iB   gives a 

first order reaction of a structural change process with a very long delay time (see e.g. fig. 

5.9). Wood always shows such coupled zero- and first order processes, which should be 

treated as 2 separate parallel acting processes, because each process may dominate in dif-

ferent time ranges. The coupling then follows from the same time-temperature and same 

time-stress shift of both processes.  

 
 

fig. 5.1 Parallel system of Maxwell units.  

 

In most experiments, one of the processes controls the overall behavior and only three el-

ements (free spring 0 1K K and Maxwell element by spring 2K with dashpot 2) have to be 

regarded (dashpots 0 and 1 are then rigid during the short loading time; see fig.5.1). During 

the deformation, the loading of the springs changes (transient flow) until all Maxwell ele-

ments flow. Then the behavior can be described by one equivalent  single Maxwell ele-

ment.  
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In the following the solutions of eq.(5.1.1) for the different loading histories will be given.  

 

 

5.2 Constant strain rate test  
 
In fig. 5.2, a three-element model is given of one dominating process controlling in the 

short term test. For the Maxwell unit at constant strain rate 
e v c      . For the domi-

nating short term process in wood, structural changes are negligible (B = C =0 in eq.5.1.1): 

 v
e v v

1

A sinh
K


           (5.2.1)  

The solution of this equation is:  

   
2

2

v 1

11
ln 1 tanh A K t C

2

  
       

  
  

   (5.2.2)  

with: 
A


   and: 2

1
2

A 1
1 K C arctan h

2 1

 
     

  

,  (5.2.3)  

if the initial value: v0 0  .  

In fig.(5.3), the stress - time relation of the model is given. For wood 1K  and v  are small 

and the line of fig. 5.3 can be approximated by a single straight line. This leads to a mean 

modulus of elasticity  :  

   2m 2 v
2 2

m m m m m

K 1 1
K ln 1 K ln 2 

           
    

              or:  

    2

m

1
K ln 2 / A ln    


   (5.2.4)  

Thus the dependence of m on the strain rate   is:  

    0 0

0 m

1
1 ln ln


       

  
,  (5.2.5)  

with:  0 m 2 m 0K ln 2      .  (5.2.6)  

 

 
fig. 5.2. Three element model  fig. 5.3. Early flow of wood  

 

Eq.(5.2.5) is equal to the experimental equation given in [1]. Because 2 mK   dominates in 
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eq.(5.2.6), 2 mK  is approximately constant and   is inversely proportional to 2 mK  . Be-

cause 0 m m n      , a value of n ≈ 12 applies for green wood and n ≈ 36 at 10 % m.c. 

as also has been found for fracture. It can be concluded that there is a small flow process in 

wood during loading at normal rates of loading.  

Because usably   is much higher than 1, eq.(5.2.2) can be approximated by:  

   v 1ln tanh A K t C / 2       , or with 1A K / 2     and 

   tanh C 1 /    ,  this is: 

v

tanh( t) tanh( C) 1 tanh( t)
ln ln

11 tanh( t) tanh( C)
1 tanh( t)


     

                

  

 

exp(2 t)
ln

1
1 exp(2 t) 1

2


 

 
     

             v

2
ln ln 2

1 2 exp( 2 t)

 
    

    
  (5.2.7)  

 with:    1 m 1e1/ 1 2 exp A K t 1 2 exp          ,   

 because: 1 m 1 m 1 m 1eA K t K t K           

1e 1 mK    is the maximal possible potential elastic stress on element 1.  

It is seen that the experimental law eq.(5.2.5) holds for relative long values of mt  when: 

1e2 exp( )   , thus for relatively slow rates. For extremely high rates is: v e     . 

Further:    v e ln 1     , or:     v e v 11 exp 1 exp K           

When all Maxwell elements of fig. 5.1 flow, a description by a single (dominating) Max-

well element is possible (neglecting the small, almost constant, stress in 1K  in fig. 5.2). If 

B and C in eq.(5.1.1) are zero, then eq.(5.2.1) applies, represented by fig. 5.4.  

 

 
fig. 5.4 Non-linear Maxwell element  fig. 5.5 Flow of all elements  

 

In general, when B and C in eq.(5.1.1) are not zero, the following applies. For a machine - 

specimen combination in a test, the crosshead displacement is (fig. 5.5):  

v

1L K

 
     

and the constant crosshead rate c   becomes:  
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v

1

L
K

 
    

 
.  Thus: v

1 1

L d
1

L K L K d

   
     

 
,  or:  

1 1 1 1
v 0

1 1

d K K K K C C
A'T B' sinh 1

d L c L L L K L K

        
              

     
   (5.2.8)  

The analogues power equation for this case has the form:  

 
n

4 v
0 1 2 3

0

d C
C C C C

d

  
      

  
.  (5.2.9)  

Both equations (5.2.8) and (5.2.9) cannot be integrated to a functional form. Results of 

numerical integration are shown in fig. 5.6 and 5.7. Clear wood in compression, parallel to 

the grain, shows a behavior like in fig. 5.4, indicating no hardening and no yield drop. 

Thus B' and C in eq.(5.2.8) may be neglected. For timber (with knots) in compression 

along the grain however there is a small yield drop, superposed on the behavior of the clear 

wood between the knots, indicating the acting of another Maxwell element (crack propaga-

tion by shear failure at the knots). Thus knots act as flow units with a low density. Harden-

ing in compression by combined stresses is only possible as system hardening by confined 

dilatation as shown in D(2008a).  

For wood in tension in grain direction, there is a high yield drop, indicating that B' in  

 

 
fig. 5.6 Yield drop eq.(5.2.8)  fig. 5.7 Influence of n, eq.(5.2.9)  

 

eq.(5.2.8) is dominating by a low initial flow unit density 0 . Measurements show that this 

is not caused by a low value of n. There is also no indication of hardening so that the dif-

ferential-equation for this case becomes:   

 v
v v

1

B sinh
K


       (5.2.10)  

Taking the solution of this equation in the form:  v 1K f t   , or:  v 1K f t   , then  

V
V

1 1 1

f f

K K K


            (5.2.11)  

and the differential equation is: 

  1f Bf sinh K f 0    , or for higher stresses where f is noticeable:  

  1

Bf
f exp K t f 0

2
       (5.2.12) 

or: 

 
  

 1

d ln f B
exp f exp K t

dt 2


        (5.2.13) 



Section B, Creep, damage processes and transformations 
 

41 

 

Now is: 
0

0

x x x

i i 0
x

exp(x)d(ln(x)) exp(x)d(ln(x)) exp(x)d(ln(x)) E (x) E (x )
 

      , the 

exponential integrals. Thus eq.(5.2.13) has as solution:  

  i i 0 1

1

B
E ( f ) E ( f ) exp K t 1

2 K
       

 
  (5.2.14) 

    0
1 i 0 1

1 1 0

exp( f ) B B exp( f )
exp( K t) 1 E ( f ) exp( K t) 1

f 2 K 2 K f

 
          

     
,   or: 

   0
1

1 0

B exp( f )
f ln( f ) ln exp K t 1

2 K f

 
        

   
  

  0 1 0

1 0

Bf f
f ln exp K t 1 exp( f )

2 K f

  
        

   
 

  0 1 0

1

Bf
f ln exp K t 1 exp( f ) 1

2K


        

 
.  (5.2.15)  

For larger values of time t, this approaches to: 

  1
1 1

1

Bf 2 K
f ln exp K t K t ln

2 K Bf

  
          

   
,     or: 

 v ln 2    ,       with: / B           and: v1/     (5.2.16) 

and the result is comparable with the case of initial high flow unit density, eq.(5.2.7).  

Because the process is small, showing only a very slight curvature of the loading line, pa-

rameter estimation is not possible with rate tests and a parabolic form of the line will be 

chosen as applies for all slightly curved lines.  

For small values of f , eq.(5.2.14) is approximately:  

 0 1

1

B
ln( f ) ln( f ) exp( K t) 1

2 K
      

 
  (5.2.17)  

or:         v v0 1

1

B
exp exp( K t) 1

2 K


       

  
  (5.2.18)  

For loading at a constant rate to a stress level m , at a strain m , this equation thus gets the 

form of:       v v0 mexp C       (5.2.19) 

when m  is constant for different values of m . Thus v  increases exponential with the 

stress. But the faint loading curve can be approximated by a parabola. Thus: 

 1 2 1 vK K K      can be given by the parabola: 2

1E c    . Thus:   2

v 1 1c / K    , 

a general property that is used later derivations. The parabolic loading line also can be giv-

en as: 2

2/ E c     , what represents the theoretical curve:  1 v/ K K / K     . Thus: 

  2 2

v 2 1 3Kc / K c     . Thus: 

 va vb
3 a b

a b

c
 

   
 

  (5.2.20) 

 

5.3 Constant loading rate test  
 

In this case is   constant for the three-element model of fig. 5.2 and as shown before iB  

and iC  of eq.(5.1.1) may be neglected for the dominating process in wood.  
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Because: 2 vK   , is: 2 v 2/ K / K    , and eq.(5.2.1) becomes:  

 v v

2 1 2

1 1
Asinh

K K K


    

 
  (5.3.1)  

having a similar form as eq.(5.2.1) and the solution has the identical form when   is taken 

to be:  

2AK


     and:     

1

1

K
   is replaced by:    

1 2

1 1 1

K K K
  .   Thus: 

 
2

2

2 2

1t 1
ln 1 tanh A K(t C)

K K 2

  
          

  
  

  (5.3.2) 

with the same value of C as given in eq.(5.2.3). The same approximation is possible as for 

the constant strain rate test. Thus:  

 v ln 2    .  

Comparison of two stresses with different loading rates, at the same strain, gives:  

     1
1 2 2 v1 2 v2 1 2

2

1 1
K K ln ln ln

 
             

   
  

 = 1 1 2 1 2 2 1

2 2 1 2 1 1 2

1 t t 1 t 1 t 1
ln ln ln ln

t t t t

        
        

            
  

or because the last term is negligible:  

     1
2 1 1 2 1

2 2 2

1 1
1 ln t ln t C C ln t


    

  
  (5.3.3)  

This is equal to the experimental equation given in e.g. [2] and [3], suggesting failure at the 

same (ultimate) strain. This has to follow from the description of the end state. In that case, 

when all elements flow (fig. 5.5), the elastic strain rate is zero and the rate equation is:  

 v Asinh t   ,  or integrated:  

  v

A
cosh t 1   


,  

For higher values of t  this becomes:  

 v

A 1
exp t 1

2


    

  
  (5.3.4)  

or with t   :   

v v1 2 1 2
ln 2 ln

A A

   
      

   
  (5.3.5)  

The strength is reached for v vu   . Thus 1  and 2 , at the rates 1 and 2  are related by:  

1 1 2 2
1 2

2 2 1 1

1 1 t 1 t
ln ln ln

t t

     
        

        
   or: 

1
2 1 1 2 1

2 2 2

1 1
1 ln(t ) ln(t ) C C ln(t )


    

  
  

what is equal to eq.(5.3.3) and gives an explanation of the experimental law given in [2], 

[3] etc., where 1C   1.2 to 1.3 and 21/ C n 27   for compression and n = 31 for bending. 

If 1/n is approximately linear dependent on the moisture content as suggested in [1], then 

these values indicate a moisture content of 13%.  
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The same result is obtained by integration of eq.(5.3.6), where only the hardening term ( iC  

in eq.(5.1.1) is not acting. Thus:  

   v vA B sinh t       (5.3.6)  

Only the ultimate strain 
vu  will have another value.  

The alternative power representation becomes (   constant):  

 
n

n

v v

0

A B t
 

    
 

  (5.3.7) 

This is easy to integrate and the results are given in fig.(5.8).  

 

 
  

fig. 5.8 Influence of the rate of loading or time to loading to the same strain [4].  

 

It can be seen from this figure, that for small values of n (n ≥ 1), there is a strong influence 

of the loading rate on the level of the flow stress. For high values of n (e.g. n ≥ 30 as for 

wood), there is only a small influence and there is a linear relation between the strength 

and log(time to failure) as is also derived before.  

For small values of n, the derivation of n in 4.6, is not general enough. From:  
n

u u

 
 

  
  

it follows that : n

u uln( ) ln( ) ln( ) nln( )         

Thus: 
d(ln( ))

n
d(ln( ))





  

Applying this operation:  
d(ln( ))

d(ln( ))




   to: Asinh( )    gives:  

n
tanh( )





   (5.3.8) 

Thus for small values of   is: n = 1, and for large values is n =  . Thus for wood is: 

n =     1  (5.3.9) 

For wood there is an empirical indication that there exists an element with a small value of 

n, as will be shown later. This is only noticeable at very high loading rates.  

 

5.4 Creep and creep recovery  
 

For the three-element model (fig.5.2), showing negligible structural changes, as applies for 

wood at common load levels, the force on the Maxwell element is determined by 

eq.(5.2.1). For the parallel spring 2K  is:  
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 v2 v

2 2 2

d1

K K dt K

 
      

Because for creep 0  , is: v

2K


   , and eq.(5.2.1) becomes:  

 v v
v

1 2

Asinh
K K

 
      or: 

 v vKAsinh 0       (5.4.1) 

where 
1 21/ K 1/ K 1/ K    

With the boundary condition: 
2K




  , is:  v 2 2K K         .   

The solution of eq.(5.4.1) is:  

   2 2
0

K K
ln tanh KAt ln tanh

2 2
 

      
             

    
  

or, because arctanh(x) 
1 1 x

ln
2 1 x

 
  

 
, this can be written as:  

 2

2

1 1 K 1
ln coth ln tanh K At

K 2 2 2
 

    
                    

  (5.4.2) 

In the early part of the test this reduces to the logarithmic form:  

 2
0

2

1 1 K 1
ln ln tanh K At

K 2 2 2
 

   
              

    
  (5.4.3) 

or: 

  0

2 v0

1 K At
ln 1

K ln coth / 2

 
     

   

   (5.4.4)  

For sufficient large values of x is: ln(coth(x)) = 2arctanh(exp( -2x)   2exp( -2x).  

Eq.(5.4.4) then becomes:  

v0
0

2

1 K At exp( )
ln 1

K 2

  
     

  
  (5.4.5)  

A fit of this equation is not found in literature. Tests of B(1989a) show however that the 

form of eq.(5.4.4) or (5.4.5) is right, also for small times. The fit in literature is always 

made for larger times (neglecting 1 in the last term) giving:  

1 2C C ln(t)      (5.4.6) 

After longer times, the influence of a second mechanism with a long relaxation time is no-

ticeable and because: ln(1 + cx) ≈ cx, for small values of cx, an additional term: C.t in 

eq.(5.4.6) is sometimes used to account for the influence of a slow process. According to 

eq.(5.4.5) is: v0 2C t K At exp( ) / (2 K )      . However this only describes the beginning 

of the process. For the whole process at very long times and sufficient high values of 

v0 / 2  , as for wood, eq.(5.4.2) can be written:  

 
2 2

1 2
ln coth(K At / 2) exp( K At)

K K
       

 
   or:  

0

2

2
(1 exp( K At))

K
      


    (5.4.7) 
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Thus the behavior becomes quasi Newtonian after long times. Eq.(5.4.1) can be expected 

to be quasi Newtonian for low stresses, because then sinh(x) = x. This equation then be-

comes:  

v vKA 0    ,    with the solution:      0 0( ) 1 exp KA t            

Also from the solution of eq.(5.4.1) this equation follows if the creep strain   is very 

small. It is seen that test results, in not too long time ranges, can be fit by Newtonian equa-

tions as often is done. This, however will give an underestimation of the relaxation times 

because it is implicitly assumed that the creep is in the end state within the measuring time 

t or that the total creep strain is small.  

For a structural change process, when i iB   dominates in eq.(5.1.1) and iA  can be neglect-

ed or regarded separately as parallel acting process, then eq.(5.2.1) of the three element 

model of fig.5.2 becomes:  

v
v v

1

B sinh( )
K


        (5.4.8)  

Because:  2 1 1
v

2 2 2 2

K

K K K K

  
        ,    or:      1 2

v

1 1

K K

K K

 
    ,   is: 

  1 2 v v
v v v v 2

1 1

K K B B
B sinh( ) exp( ) exp K

K K 2 2

   
              

giving:   1 2 1 2 2(K K ) B (K K ) exp K
2 2

  
         

 
  (5.4..9)  

For creep is   = constant, or 0  , thus:  2

1 2

B
exp K

2 K K

 
     

 
    or:    

 2 2 2
2

1 2 1 2

2

1 2

d K K B K
exp K exp dt

K K 2 K K
K

K K

      
       

          
 

  

having the form:    
0

0

x x x

i i 0
x

dx dx dx
exp(x) exp(x) exp(x) E (x) E (x )

x x x 
        

or:   1
i 2 i 2 0

1 2 1 2 1 2

Bt K
E K E K exp

K K K K 2 K K

        
             

        
  (5.4.10) 

Thus: 

 
fig. 5.9 Irrecoverable creep (eq.(5.4.11))  

 

1 1 v0 1 2
i i

1 2 2 1 2 1 2

1 Bt K K K
E exp E

K K K 2 K K K K


     

        
      

  (5.4.11)  
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For larger values of x is: iE (x)  ≈ exp(x), and for small values is:  

iE (x)  ≈ 0.577 + ln(x). Thus for small times and small dislocation densities eq.(5.4.10) be-

comes:  

   v v0

2

B K
ln K t exp ln K

2 K

 
       

 
  (5.4.12) 

or:   v0 1

1 2 2 1 2

K B K
exp t exp

K K K 2 K K

   
      

   
  

Thus there is a small exponential increase of the deformation during the first stage of the 

creep (delay time), as measured in e.g. [5], when the initial dislocation density is small (see 

fig. 5.9). At still smaller times eq.(5.4.12) can also be written:  

  v v0 v v0
v v0

v0 v0 2

B K
ln / ln 1 t exp

2 K

        
         

   
  

and because    v v0 0/ c      , this is: v0
0

2

B K
t exp

c 2 K

 
       

 
   (5.4.13)  

 2 1c 1 K / K  . Because v0  increases quadratic with   at loading to the creep level, 

eq.(5.4.13) shows for shorter times a small initial quadratic increase of the creep with   as 

measured in p.e. [6] (  is constant).  

Eq.(5.4.10) becomes for larger times:  

2

2 1 1
2 0

2 1 2 1

2

2 1

exp K
K K B K

t exp ln K
2 K K K K

K
K K

  
    

                
          

 

            or: 

1 2 v 1 1 2 v0
2

2 1 2 1 2 1 2 1

K K B K K K
K ln ln t exp ln

K K K K 2 K K K K

           
              

          
 

Thus for very small values of:    1 2 1 v 1 2/ K K K / K K     , the double log-plot 

applies in stead of the semi log-plot. For larger values, with 1 21/ K 1/ K 1/ K   this equa-

tion becomes:  

   v v0

2 1 2 2 2

1 1 B K
ln K ln t exp ln K

K K K K 2 K

  
            

     
  (5.4.14) 

Because v0K   is a small value, ln( v0K  ) is a high negative value. If this is replaced by 

the, during the initial creep stage, increased value v1  according to eq.(5.4.12), eq.(5.4.14) 

becomes:  

     v 1 v1

1 2 2 2 2

1 1 B K
ln K ln t t exp ln K

K K K K 2 K

   
           

     
    or: 

  v 1 v1

2 2 2 2

1 B 1 2 K
ln K ln t t ln K exp

K K 2 K B K

  
             

     
   (5.4.15) 

Because the second term on the right hand side is of minor importance, a mean value of v  

can be applied and because:  

    2 0 v0 2 0 2 v0/ K / K 1/ K ln exp         , the equation can be written:  
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 
 v v0

0

2

KB exp1
ln 1 t t '

K 2

  
       

  
   ( 5.4.16)  

where    1 v0 v1

v

2 1
t ' t exp ln K

B K


       

  
.,    is not far from 1t .  

For long times t >> 
1t , eq.(5.4.15) becomes:  

v

2 2 2

1 KB 1
ln ln(t)

K K K

   
    

  
   (5.4.17) 

or:   1 vln KB / 2 ln(t)       

Thus the stress on element 1, 1 , is zero at time:  m vt t 2 / KB     and eq.(5.4.17) 

turns to:  

m

2 m

1 t
ln

K t


    

  
  (5.4.18)  

where m 2/ K   , when all the stress   is on element 2 and the maximal strain is 

reached. (Of course   is not the real strain for mt t , but the extrapolation of the straight 

line approximation to m , see fig.5.9).  

For higher initial values eq.(5.4.10) becomes:  

   v v0

v v0 2

exp K exp K B K
t exp

K K 2 K

      
    

     
  (5.4.19)  

or:       v v0
0 2 0

2 v0 2

1 1 K B
ln ln 1 t exp K

K K 2

    
           

     
 

or, because of the minor influence of the second term on the right hand side:  

 v
0 v0

2

1 K B
ln 1 t exp

K 2

  
        

  
  (5.4.20)  

what is comparable with eq.(5.4.5) as can be expected for higher initial flow unit densities.  

The behavior according to fig. 5.9 is measured for wood. Because this is related to the cel-

lulose, test results of dry summerwood fibers of pine holocellulose pulp [5], are also dis-

cussed. (holocellulose   the wood structure without lignin). 

In fig. 5.10, the average creep compliance of 50 fibre bundles is given for different initial 

stresses. As follows from the very different values of the initial compliances and from the 

not decelerating curves, flow without hardening must have been occurred. The kinked lines 

indicate two processes and a description is possible with two Maxwell elements. Because  

one process is slower than the other, a three-element model approach (one Maxwell ele-

ment and one free spring) is initially possible. The line with the small slope is the quick 

process and as before, structural changes can be neglected (eq.(5.4.1)). The line with the 

steep slope, shows a strong delay time (see fig. 5.9) and follows exponential integral func-

tion of structural change processes, eq.(5.4.8).  

As seen in fig. 5.11, the lines can be moved horizontally along the log( t) axis, to form one 

curve (giving the behavior after long times at the lowest given stress).  

The line with the small slope is accordingly to eq.(5.4.4) and the line with the steep slope 

is given by eq.(5.4.16). It appears that in these equations, 21/ K  is constant or 21/ K  is 

proportional to  , as also can be seen for creep of wood at lower stress levels. Thus   is 

constant, indicating that the number of creeping mechanisms per unit area increases with 

increasing initial stress. Except for cellulose materials, this property is also found in other 
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materials, like metals and rubbers [4].  

The compliance according to eq.(5.4.4) is for longer times:  

 0 0
v0

2 2

1 K At 1 t
ln exp ln

K 2 K t '

     
       

      
   (5.4.21)  

where 
21/ K  is constant, independent of stress and temperature. Because of this, the  

 

 
fig. 5.10 Creep compliance [5]  fig. 5.11 Master creep curve [5]  

 

time temperature and time stress equivalence applies. According to this principle, for a 

horizontal shift of a creep equation along the time axis to an higher stress level a b   , is 

necessary that b b/   at time bt , has to be equal to a a/   st time at . Thus it follows from 

eq.(5.4.21):  

      a b 0a 0b
a b a b

a b a b 2

1
0 ln t ln t ln t ' / t '

K

   
      

    
  

Thus: 

   
 

 
b b v0b1 2 v0a v0b

a b

1 2 a b a a v0a

expK K
ln t ln t ln

K K exp

     
              

v0a v0b

a b

K
  

   
  

 

because the neglected term is of lower order as follows from the following. According to 

eq.(5.2.7, ) for loading to the creep level, this neglected term is:  

a a a a a a a

b b b b b b b

2
ln ln ln

2

          
     

          
  

for loading at approximately the same strain rate   ( 1  ). Because   is constant is:  

a a a b b 2 2 0a 0b
2

b b a a a a b a b

K K
ln ln ln ln ln K

                  
                 

                  
 

and thus negligible because 1  . Thus  

v0a v0b
a b

a b

ln(t ) ln(t ) K
  

    
  

  (5.4.22) 

with a a b b       . Thus the shift is mainly dependent on the relative initial plastic 

strains. These strains arise during the loading to the creep level and because of the faint 

curved   diagram, a parabolic approximation is possible (see above eq.(5.2.20)), lead-

ing to 2

v 3c   , which substituted in eq.(5.4.22), gives:  

   a b 3 a b a bln(t ) ln(t ) Kc C         .  (5.4.23)  
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as also found empirically. The same time-temperature and time-stress equivalence applies 

for eq.(5.4.20) of the second mechanism, that occurs directly at creep, without a delay 

time, when loaded at a high stress level and leads to the same relation for the shift of the 

compliance along the ln(time) axis. The same can be stated for eq.(5.4.16). Because the 

shift of the second process is equal to that of the first process, there must be a critical value 

of the compliance, independent on the applied stress, where the second process starts. Thus 

it is probable that the first process creates the accumulation of flow units, for the second 

process. This also applies for wood (even for denser species as for instance Hinoki) and as 

can be seen in fig. 5.10 by the shift of the lines in proportion to the stress, the compliance 

increases linearly with the stress level (at a given time, as given in fig. 5.12 for wood).  

 
frig. 5.12 Dependence of the creep compliance on the stress level [7].  

 

A fit by two lines with positive slopes would have been better in fig. 5.12 and the slope of 

the line at low stress levels is steeper [6] for dense species and higher moisture contents. 

However in the past, as a first approximation, the line for low stress levels was in practice 

often regarded as a horizontal line. This means that for this process v  is proportional to 

 , and the behavior thus was regarded quasi linear. Thus for loading to  :  

   v 1 v

1
K ln 2      


      or:       v

1

ln 2
K


    


      or:     

v c''         because:   1K     is constant 

The parameter estimation for creep in [7], clearly shows the tendency of constant   at 

low stress levels, while the there estimated changing spring constants at higher stress levels 

is the indication of the occurrence of the mechanism with constant 2 . This will be dis-

cussed later. 

The constancy of   can be explained as follows. For compression the number of devel-

oping slip planes N is about linear proportional to the stress level   at lower stress levels. 

Thus  /N = c, and / NkT 'T / NkT '/ Nk      c '/ k  is constant. At a level 

of about 50 to 65% creases are formed, leading to the second mechanism of gross buckling 

of the cell walls where a constant buckling stress f may be expected. Thus 2 3/ N f      

is constant, or / N  is constant. Analogous is for crack propagation in tension the real 

stress f at a sharp crack at any stress level equal to the flow stress and is 2 3f    constant 

or is / N  constant.  
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In the analysis above, it is assumed that the temperature is constant. To know the shift of 

the compliance along the time axis due to temperature, the same stress level has to be used 

in all tests at different temperatures. Then:  

a b a bln(t ) ln(t ) E'/ kT E'/ kT     

where E' is the activation energy. This is only true if 21/ K  is constant, independent of 

the temperature (e.g. for creep). If this is not constant, reduced strains are necessary to ob-

tain the right activation energy.  

If all Maxwell elements flow, one is determining for the overall rate in the end state and 

the power equation becomes for the general case:  

 
n

a
0

0

M
A' B

   
     

 
  (5.4.24) 

This equation cannot be integrated. Numerical solutions show that the delay time is due to 

"dislocation multiplication" similar to yield drop, dependent on the initial flow unit density  

(see fig. 5.13). For creep recovery, after long time, the initial conditions are: 0  ;    ,  

 
fig. 5.13 Creep dependent on model parameters  

 

when t = 0, leading for the three-element model to:  

 v0 1 2

2 1 2

1 1 K K A t
ln coth ln tanh

K 2 2 2(K K )

     
              

   (5.4.25)  

analogous to eq.(5.4.2).  

 

5.5 Stress relaxation  
 

The three element model (fig.5.2) loaded to 0  at strain 0  at time 0t gets the stress 

0 v0   on spring 2. This remains unchanged when by relaxation stress v  on spring 1 

decreases. For the Maxwell element is: 0  , or: v 1 vK    , or:  

v 1 vK Asinh( )     (5.5.1) 

Integration gives:     v 1ln tanh / 2 A K t C         or:  

    v v0 1

2
arctan h tanh / 2 exp A K t     


  (5.5.2) 
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This equation can be written with: v0a tanh( / 2)    and 1b A K  : 

     
     

v

a exp bt / 2 ln a a exp bt / 2 ln a1 1 aexp( bt) 1
ln ln

1 aexp( bt) a exp bt / 2 ln a a exp bt / 2 ln a

                       
 

 

or:    
v

1 bt 1
ln tanh ln(a)

2 2

 
    

   
 or:  

1 v0
v

1 A K t 1
ln tanh ln tanh

2 2 2

      
             

  (5.5.3) 

For the early part of the relaxation this is:  

1 v0
v

1 A K t 1
ln ln tanh

2 2 2

     
      

    
   or: 

 v01
v

1

2arccoth1 A K 1
ln ln t

2 A K

  
      

     
   (5.5.4) 

Except for very small times this will have the empirical form:  

v 1 2C C log(t)     

The total stress on the specimen is: 0 v0 v(t)     ,    or 

 
1

0

v0

A K t
ln 1

2 arccoth exp( )

 
        

  (5.5.5) 

or for not too small values of v0  : 

 1 v0

0 0 0

1 A 1 t
1 ln 1 K t exp 1 ln 1

2 t '

   
            

      
  (5.5.6)  

in agreement with the experiments in (1989a).  

For longer times eq.(5.5.6) becomes:  

0 0

1 t
1 ln

t '

 
   

    
,     with:   

 1 v0

2
t '

A K exp


  
   (5.5.7)  

and for a horizontal shift of this relaxation line along the ln( t)-axis is:  

        b v0b v0a
a b a b

a 0b 0a

ln t ln t ln t ' ln t ' ln
   

     
   

  (5.5.8) 

For loading to the same stress level at different rates is a b   , and the shift is:  

    b b
a b

a a

ln t ln t ln
  

  
  

 (5.5.9) 

where . i  is the strain-rate for loading to the creep level.  

This equation can be compared to the test results of [8] on micro-specimens of latewood 

and earlywood (Spruce and fir). The measured lines, given in fig.5 of [8], can be precisely 

described by eq.(5.5.6), giving a value of:  

01/ 0.026  , for earlywood and: 0.032 for late wood. Thus a mean value of: 0.029 or: 

0 34.5  , where t '  is dependent on the rate of loading to the creep level, as predicted by 

the theory. The delay time t '  is:  

t '  = 0.145 sec. for quick loading and is: 4.35 sec. for loading at the slow rate. Thus the 

shift of the line eq.(5.5.7) is:  
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     a bln t ln t ln 4.35 / 0.145 ln(30) 3.4     

According to eq.(5.9) is the shift, due to the difference of the rates of 0.002 and 0.208 

mm/sec.:  

     a b b aln t ln t ln 104 /    , indicating: b a0.29   . 

 

 
b 1 v0bb b 1 v0b

a a 1 v0a

1 exp K K

1 exp K 1

    
 

   
  

when 
vob  is very small (fast loading) and 

voa  is sufficient large (slow loading). Thus: 

b 1 v0bK 0.29   , with: b 1 0 0K 0.2 0.2 34.5 6.9       , is:  

b 1 v0b b 1 0 v0b v0bK K 6.9        =0.29, or: v0b 6.6  . 

 

 
v0ba

v0a

b v0a

expt '
ln 3.4 ln 6.6

t ' exp

 
       

, giving: v0a 3.2  .  

The values of v0  are first estimates because the value of 1K  of:  1 1 2K 0.2 K K    is 

an estimate. Further, at the fast loading rate, there is a small influence of another very 

quick relaxing element that is not noticeable at the slow rate (see fig. 5.8). Accounting for 

this influence would lower the ratio of the strain rates in the analysis above. Nevertheless 

the data of [8] can be fully explained by the theory and the value of 0n 34     is com-

parable with the values of other experiments.  

 

 
 

fig. 5.14 Typical curves for relaxation [8]  

 

At relaxation of tropical wood, as measured in [9], there appears to be more plastic defor-

mation increase than for relaxation of the species of [7] (different types of ash, hoop pine 

and blackbutt).  

For parameter estimation in [9], it was assumed that all relaxation processes were finished 

at the same time (8 hours) independent of the stress level. The consequence of this assump-

tion can be seen by the following equation. Eq.(5.5.7) can be written, with v0A B  , for a 

structural change process:  

v0 1 v0 2 0

0 0 0 0 0 m

1 K B K 1 t
1 ln t ln

2 t

    
       

       
  (5.5.10) 

Extrapolation of this line to the stress value that is reached at the end of the relaxation: 
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2 0K   , gives the intersect  m v0 1t 2 / BK  . Thus the assumption of equal times of 

total relaxation, is equivalent with the assumption that 
mt  is constant, or 

v0  is constant 

(in stead of 0 ). Because v0  is proportional to 2

0 , it is assumed that 2

0  is constant. It 

can clearly be seen from the parameter estimation of [9] that 1 0K   is constant there and 

1K  increases linearly with the strain. Because 
1K  has to be constant, it follows that 2

0  is 

constant. This leads to the relaxation line (with 2

v0 0c   ):  

 

 
0v0

0 0 v0 0 v0 1 2

c ln t / t '1 t t
1 ln 1 ln 1

t ' t ' K K

   
        

       
  (5.5.11)  

and a plot of this equation for t = 8 hours is given in fig. 5.15. It is seen that also the second  

 
 

fig. 5.15 Relaxation for compression of tropical wood [9]  

 

mechanism, above 2600 µm/m, has this dependency of  . The constancy of v0 , which 

only occurs at high stresses for the species of [7], may also appear at low stresses in tropi-

cal species. On the other hand, the influence of the creep of the strain gauges is not known 

and it is possible that the creep of the glue is also measured. The same process lasted 28 

hours in [7] (in stead of 8 hours in [9]) by using a very thin glue layer. Because this mech-

anism is different from those of wood tissues (cell walls), wood pulp (cellulose), and for 

fracture, and is dominating in dense lignin rich species, it may represent a flow mechanism 

of the lignin. For high stresses also another mechanism may occur with a constant  , as 

measured for Blackbutt in [7], and as found for spruce in the B(1989a) investigation.  

It may be supposed that the parabolic loading line, for loading up to the relaxation strain, 

may be due to a specter of mechanisms, or at least by two parallel processes. Then the re-

laxation equations for that case are:  

 1 1 1 1 1K A sinh 0       

 2 2 2 2 2K A sinh 0       

with: 1 2     (or, if there is a parallel spring: 1 2 3      where: 3 3K    repre-

sents the parallel spring).  

The solution of these equations are:  
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1 10

1 1

1 t
ln 1

t '


     

  
       and:       2 20

2 2

1 t
ln 1

t '


     

  
 

or with: 
0 10 20     and for longer times:  

       0 1 2 0

1 2 1 2 1 2

1 1 1 1 1 1 t
ln t ln t ln t ' ln t ' ln

t '

 
             

        
  (5.5.12) 

with:  
 

 
 2 1 2 1 1 2/ /

1 2t ' t ' t '
     

    (5.5.13)  

If one of these mechanisms is comparable with those of wood tissues and or wood pulp 

(cellulose), then for the first mechanism is: 0 1 1c    is constant or 
0 1   is approximately 

constant and for the other is 2

2 0 2c    is constant. Then eq.(5.512) becomes:  

1 0

0 0 1 2

1 c t
1 1 ln

c t '

  
     

     
  (5.5.14) 

and this equation doesn't approach the value 0/ 1    for 0  approaching zero. This thus 

is not probable as can be seen in fig. 5.15.  

The influence of temperature on stress relaxation is e.g. given in [10] for wet Hinoki wood. 

It appears that   is constant and is independent of the temperature below and above the 

transition temperature (about 50 
0
C), being smaller above the transition temperature.  

For a horizontal shift of the line along the ln(t)-axis due to temperature difference is:  

a b

0
   

    
   

  

leading to the so called Arrhenius equation. This is derived in 6.3, see eq.(6.3.14). 

Thus:   a b b a b aln(v) ln(t ) ln(t ) ln A / A (H / RT) (H / RT)         or:  

  d ln v H

d(1/ T) R
    (5.5.16)  

The shift of the relaxation lines have to be done for both slopes of the lines separately. If 

this is done on the data of [10] an apparent activation energy H of about 46 kcal/mol is 

found above and about 28 kcal/mol below transition (as also found for creep in [7]). In the 

transition region (between 40 
0
 C and 60 

0 
C) also vertical shifts are necessary for a precise 

fit because of the temperature dependence of   in this region. Thus there is a transition to 

a different mechanism with a smaller value of  , or with an increased number of activated 

sites N and a higher activation energy.  

 

 
 

fig. 5.16 Stress relaxation curves for wet Hinoki [10] at various temperatures.  
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fig. 5.17 Master stress relaxation curves and shift diagram [10]  

 

For the mechanism with a constant, stress independent value of  , there is an indication 

that   is also independent of the temperature as follows from the B(1989a) investigation.  

As mentioned before, the non-linearity of the time dependent behavior is not strong and 

there is no well defined point of flow at loading and the loading line can be regarded to be 

parabolic and the plastic strain v0  is therefor proportional to 2

0 . In the following it will be 

shown that this is a possible approximation.  

For loading up to the level of creep or relaxation is:  

v

v

2
ln

B

 
   

 
   or:     1 v vK ln 2 /         (5.5.17)  

Substitution of:   2

v c      gives:  

2

2

1

2
c ln

K c

  
     

   
    or:   

2

2 2

1

1 2
1 c ln

K c

  
    

    
    or: 

2

1

1 2
1 c ln 2ln

K c

     
      

      
   (5.5.18) 

where   here is a constant, chosen in such way that   /    is sufficient small with 

respect to 1. Then:  

ln ln 1 1
       

       
     

  (5.5.19) 

Eq.( 5.5.18) then becomes:       2

1 1K K c ln 2 / c 2 / 2           

In this equation the terms with   have to disappear and because   is constant is:  

1K c 2       and;    1 1K 2 ln K /      

Thus an estimate for c is:  

 
 12

1

2
c exp K 2

K


  


  (5.5.20) 

The same can be done when 2  is constant. Eq.(5.5.18) then becomes:  

2 2

1

1 1 2
c ln 2ln

K c

     
     

      
  

or with eq.(5.5.19):  

 2 2 2

1 1K / cK ln 2 / c 2 / 2          .    Thus:  
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2

12 K        and:     
 

2

1 v

1 v

K
c exp(2 K )

8


  


  (5.5.21) 

As mentioned in 5.4, there is also a possibility of an approximate linear relationship be-

tween 
v  and 

v  (influence of lignin). When   is close to 1, eq.(5.5.17) can be written:  

v

1

1 2
1 ln c

K A

  
       

   
   (5.5.22)  

An example of this relationship is mentioned in 2.3.2, where the number of slip lines in-

creases linearly with the stress level.  

When   is constant, the shift of the creep line (and not the compliance line) or the shift of 

the relaxation line (and not the line of relative relaxation) has to be regarded to see the de-

pendency of v  on  .  

 

5.6 Conclusions  
 
For many materials there is a dominating mechanism with a constant value of 0  (nde-

pendent of the temperature and initial strain 0  at constant moisture content). Probably this 

is the case for slip-line formation, local buckling, and crack initiation and propagation, but 

it also applies for short segments movements of rubbers in the glassy state. Until now it 

was not recognized that this also applies for wood. Coupled to this mechanism is another 

mechanism with a lower value of  and a long delay time (flow unit increase) that occurs 

after some critical visco-elastic strain (0.4% [6]) of the first mechanism and possibly this 

first mechanism creates the room, or the flow units, for the second mechanism. The addi-

tional creep strain of this second mechanism is irreversible [6]. This mechanism did not 

occur in cell wall experiments, even not at high stress levels. Because in high loaded wood, 

the early-wood is higher loaded than in these cell wall experiments and thus flows, this 

mechanism can probably be related to flow of the early-wood and load transmission from 

the early-wood to the latewood.  

The dependency of this mechanism on the moisture content   follows from strain rate 

tests, where it was found that 1/n is proportional to   (or the density of flow units N is 

proportional to  ). The same was found in creep tests.  

Besides these dominating mechanisms, that are related to the cellulose and hemi-cellulose, 

there is a small mechanism with a low value of  .  

(n = 1) and a short relaxation time that is only noticeable at very high loading rates.  

With the property of constant 0  (or constant n), it is possible to explain experimental 

laws as, for instance, the linear dependence of the stiffness on the logarithmic value of the 

strain rate in a constant strain rate test; the logarithmic law for creep and relaxation; the 

shift factor along the log- time axis due to stress and temperature; the different power 

models (of the stress and of the time) as the Forintek model and the Andrade and Clouser 

creep- equations; the constant of the WLF-equation and the height of the relaxation spec-

trum as shown later.  

For clear wood in compression there in no indication of hardening and yield drop, showing 

the influence of a amorphous polymer (lignin). For wood in tension there is a high yield 

drop, showing the influence of a crystalline material (cellulose) dominated by a low initial 

flow unit density 0 . There is also no indication of hardening, showing that the change of 

one model-parameter ( 1 ) dominates as also follows from the high value of  .  



Section B, Creep, damage processes and transformations 
 

57 

 

The viscoelastic and viscous flow strain at loading to the creep or relaxation level, is ap-

proximately proportional to the quadrate of the strain: 2

v c   , for holocellulose (= wood 

structure without lignin) and for flow of the early-wood. For wood at low stresses 
v  is 

about linear dependent on   and the viscoelastic behavior is quasi linear by the influence 

of the lignin wherefore vB A   is constant (by the high initial flow unit density and no 

structural change).  

The existence of another mechanism in wood is reported in [7] and [9]. For this structural 

change mechanism, the relaxation time is independent of the stress level and thus it is not 

related to the holocellulose. It can be deduced that for this mechanism v  or 2

0  is con-

stant. Thus the number of creeping sites N increases with increasing plastic strain 

( 1 1 v0n / NkT ( / ) / kT(N / ) / kTN'         , with 1N' N /  . being the number of 

flow units per unit volume). Half of the stress was relaxed in about 10 minutes in [9], but 

the process occurred only at high stress levels and lasted much longer in [7] (halve of the 

creep in about 3 hours). Possibly there is an influence of creep of the glue of the strain 

gauges. The thin glue layer of [7] may then explain the much longer relaxation time. How-

ever also measured in [7] are mechanisms with constant   at low stress levels and con-

stant  f at high stress levels (with v c   ) indicating a right behavior of the strain gaug-

es. Thus a better explanation is that this is a mechanism in the lignin. Tropical woods are 

much denser and contain much more lignin (about twice as much) than the Nordic species. 

Especially the Nordic hardwoods have the less content of lignin and will not show this 

mechanism.  

The constancy of v  applies only for constant temperature and moisture content. Proba-

bly v1/   is linear dependent on   and T. In the B(1989a) investigation an approximate 

constant  , independent of the temperature and moisture content, was found for high 

stress levels (and probably this is due to a dominant influence of diffusion on the creep by 

the small cycling humidity conditions as discussed in 7.2. In that case, the stress independ-

ent part of the activation energy is linear dependent on  ).  
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6. Other aspects of the derived theory  
 

6.1 Introduction  
 
The derived general theory is able to explain the different empirical equations and to give a 

physical meaning to the constants of those equations. This will be discussed here for fre-

quently used models.  
As shown before, equations in the power of the stress, as the Forintek model and as used in 

fracture mechanics, can be explained. The same is possible with the relations containing 

the power of the time, as the Andrade and Clouser equations. It appears that the Clouser- 

type equation is equivalent to the theoretical logarithmic creep behavior.  

The derived deformation kinetics theory also gives an explanation of the WLF-equation 

(Williams-Landel_Ferry is WLF) for the shift factor of the creep line at different tempera-

tures along the log-time axis. The theory explains why this equation also applies for cross-

linked polymers at transient creep.  

Often, the nonlinear viscoelastic deformation problem is linearized by splitting up the con-

tribution to the rigidity in numerous linear viscoelastic processes giving a relaxation spec-

trum. It is shown here that, on the contrary, by a special property of the activation volume, 

a single process explains the measured, broad, nearly flat spectra of glasses and crystalline 

polymers, giving a physical meaning to a spectrum.  

 

 

6.2 Mathematical explanation of the Andrade creep equation or of  
  the power model for creep  
 

Power models are first approximations, regarding only one acting process. Application for 

more at the same time acting processes, needs a determination of the applied stress 1 , 2 , 

of each process, providing more than one power. The Andrade-type equation for the de-

scription of creep is often used for wood and wood-products. The "constants" of this equa-

tion depend on the chosen time scale. To explain this equation and this behavior, a deriva-

tion of the constants is given, showing the physical meaning of the "constants", by compar-

ison with the theory of reaction kinetics as given in § 4. Andrade divided high temperature 

creep into three regions: primary or decelerating creep, secondary or steady state creep and 

tertiary or accelerating creep. For the description of low temperature creep, that is consid-

ered to have only a decelerated stage, Andrade suggested the following equation:  
1/3

0 1 2c t c t       (6.2.1)  

where   is the deformation, c, 1 2c ,c  are constants and t is the time. For the cross-linked 

polymers of wood 2c  is negligible and eq.(6.2.1) becomes:  
1/3

0 ct      (6.2.2)  

For wood, c is proportional to 0  (as will be discussed at the end of § 6.2) and eq.(6.2.2) 

can be expressed in the relative creep  :  

1/30

0

Ct
  

  


  (6.2.3)  

or more general:  
mCt    (6.2.4)  

This equation is known as the "power-model" or "Clouser" equation. To explain the mean-

ing of this empirical equation it will be compared with the theoretical equation for deceler-
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ated creep behavior as given before in § 5.4. From this theory it appears that decelerating 

creep can be described by:  

  1 2 3 4c c ln coth c c' t      (6.2.5)  

where the constants 
ic  are known expressions in the molecular parameters. In the early 

part of the process this reduces to: 

 0 2 4c ln 1 c t       (6.2.6)  

or for not too short times, comparable with the range where eq.(6.2.1) is applicable, thus 

when: 
41 c t , is:    1Bln t / t    (6.2.7)  

Thus eq.(6.2.4) has to be compared with this expression. Eq.(6.2.4) can be written like:  

          
m m m m

1 0 0 1 0 1 0A' t / t A' t / t t / t A' t / t exp mln t / t       (6.2.8)   

or in Taylor séries:  

         
2 3m

0 1 0 0 0

1 1
A' t / t 1 mln t / t mln t / t mln t / t ....

2 6


       

 
    

       
m

0 1 0A' t / t 1 mln t / t    (6.2.9)  

where 0t  is a scaling time providing that  0m ln t / t  will be smaller than 1 and   is the 

small influence of the higher order terms.  

Eq.(6.2.7) can be written:       0 0 1Bln t / t Bln t / t     

and comparing with eq.(6.2.9), the conditions to obtain the same values with both equa-

tions are:  

 
m

0 1mA' t / t B      and:          
m

0 1 0 1A' t / t 1 Bln t / t         

leading to:  

   0 11 ln B / mA' mln t / t      (6.2.10)  

The value of   can be taken at some intermediate time bt , between 0t  and the maximum 

time of observation mt .  

       
m m

b 0 b 0 b 0 b 01 exp(mln t / t ) mln t / t t / t ln t / t       (6.2.11)  

or with aid of eq.(6.2.10):  

     
m m

b 1 b 1exp 1 t / t / ln t / t    (6.2.12)  

Now is m in eq.(6.2.13) not constant:  

   
m

1 1A' t / t Bln t / t    (6.2.13)  

If in this equation m is regarded as a function of time then the change of m with time is 

minimal for B = Aꞌ and eq.(6.2.10) becomes:  

 1 m exp 1       (6.2.14)  

or with negligible  :  

1 = m.e    or:   m = 1/e = 0.368  (6.2.15)  

or better, if q 0.1   is chosen for curve fitting, then: m = 0.334 which is the exponent of 

Andrade.  

From eq.(6.2.10) and eq.(6.2.12) it follows that 0.1  ,  0 1t / t 27 ,     b 1t / t 93    and 

m 1t / t 195  can be taken for not too high deviation at mt . According to eq.(6.2.9) is 

m 1t / t 540  to maintain convergence of the series. For larger time scales m will be differ-

ent. For instance, if  b 1t / t 100000 to 1000000, than m is about: m = 0.2. 
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The meaning of the constants of the Andrade equation can now be given.  

Because Aꞌ = B, is Aꞌ equal to the inverse of the initial creep stress times the activation 

volume parameter:  

1/ A' V / RT    (6.2.16)  

where   is the creep stress, V the activation volume, R the gas constant and T the absolute 

temperature. For not to high stress levels A` can be regarded to be constant because V is 

inverse proportional to  . As measured in [1], C = 0.02 for m = 0.31 for timber, indicating 

a value of Aꞌ of about Aꞌ = 0.03. The value 1/Aꞌ has the same meaning as the exponent n  

(n = 1/Aꞌ) of the experimental power law of the creep rate nc   .  

The time 
1t  is for wood the delay time of the main process where the creep levels off to 

higher rates. It is a function of the activation parameters and is dependent on the initial 

flow unit density.  

It can be concluded that the Andrade-type equation is equivalent to the theoretical loga-

rithmic creep behavior and that the constants accordingly have a special meaning and can 

be compared with the theoretical parameters. Because these "constants" are not really con-

stant but functions of many parameters, it is necessary to use the logarithmic representation 

instead of the power-model for a real prediction of behavior after long times.  

 

 

6.3 Derivation of the WLF-equation for the time-temperature  
  equivalence above glass-rubber-transition  
 

The derivation and explanation of B(1998a), of the WLF-equation (Williams-Landel-Ferry 

is WLF) for the time-temperature equivalence above glass-rubber transition temperature, is 

outdated and therefore not discussed here. The theory is renewed and extended in B(2010) 

and in B.3, leading to an important new vision, discussed in a separate section B.3. 

 

6.4 Relaxation and retardation spectra  
 

The nonlinear viscoelastic deformation problem is often linearized by splitting up the con-

tribution to the rigidity in numerous linear viscoelastic processes. Thus the contribution: 

fdt  to  G(t) is associated with relaxation times in the range   and   + d  . Mostly a loga-

rithmic time scale is used and the contribution of the range ln(t), ln(t) + d(ln(t)) is 

H.d(ln(t)) with  H = ft. The time dependent rigidity or relaxation modulus is then:  

    G(t) G H exp t / d ln







         (6.4.1)  

Because a spectrum of relaxation times does not exist, as follows from the zero relaxation 

test, eq.(6.4.1) has no physical meaning, and is a mathematical representation of measured 

data by H, called relaxation spectrum. For the solution of H, the intensity function  

exp(-t/  ), having values between 0 and 1 for   = 0 to   = ∞, can be approximated by a 

step function from 0 to 1 at   = t, Thus:  

 

  
ln t

G(t) G H d ln



       

Differentiation of this equation with respect to the limit ln(t) gives:  

  
  

 
t

d G t
H

d ln t


     (6.4.2)  
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Thus the relaxation spectrum at t   is, as first approximation, the negative slope of the 

measured relaxation modulus. This approximation is accurate if H changes slowly with 

time. Except for the beginning and end of a kinetic process in wood, G(t) has the form:  

   G t G C ln t     (6.4.4)  

 

 
fig. 6.4 Master relaxation curve G(t) and relaxation spectrum of wood [8].  

 

and H = C (where C is proportional to the slope of G(t)) in a wide time range due to a sin-

gle acting process. This explains the measured, broad, nearly flat spectra of glasses and 

crystalline polymers.  

As mentioned before a second process is starting in wood and in other highly crystalline 

polymers after a long delay time depending on the stress level. At the transition to this sec-

ond process the change of H is not slow with time and H can be approximated by:  

 
  
  

  

  

2

2

t 2

d G t d G t
H

d ln t d ln t
 

      (6.4.5)  

leading to the outline above of the relaxation spectrum for wood in fig. 6.4 that is due to 

two non-linear processes in stead of the assumed infinite number of impossible linear vis-

coelastic processes which are shown to be non-existent by the zero relaxation test dis-

cussed at § 8. The relaxation spectrum H thus is nothing more than an alternative mathe-

matical expression of the measurements G(t).  

 

 

6.5 Spectrum of energy loss at forced vibrations and fatigue  
 behavior  
 

For a forced vibration on a single Maxwell element by an applied strain: ε = a∙sin(2πυt), 

the stress is: σ = b.sin(2πυt + θ) and the absorbed energy is:  
ct

0

Z d absin( )        (6.5.1)  

where tc is the period of the vibration 1/υ and θ is the phase angle.  

For the three element model at small values of v  applies:   
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v
v 2 2K

A


      


  (6.5.2)  

or also:  1 v 2K K     .  (6.5.3)  

Elimination of v  in the last two equations gives:  

 1 1 2 1 2A K K K A K K         (6.5.4)  

Substitution of the expressions for   and   gives:  

   1A K bsin 2 t 2 bcos 2 t         

     1 2 1 2K K 2 a cos 2 t A K K a sin 2 t           (6.5.5)  

This must be true at any time, thus the sum of the terms containing cos(2 t) has to be 

zero and also the sum of the terms containing sin(2 t). This leads to:  
1

1 2

1 1

2 (K K ) 2
b sin( )

A K A K


     

      
    

  (6.5.6)  

and:  

 

 

12
1

22 2 2
1

2 aK A
sin( )

bK 4 b A





 
 

   
  (6.5.7)  

Thus from eq.(6.5.1) follows:  

 

 





  


   

12 2 2
1

22 2 2
1

2 a K A
Z

K 4 A
  (6.5.8)  

The energy of absorption is maximal at the frequency n , where: Z/ 0   .  

Thus: n 1K A /2    .  

For a relaxation time distribution:  

 
2 i i

2
i i

K /
Z a

1 /

 
 

  
   (6.5.9)  

Usually this is given for an infinite number of processes as:  

2 2
h( ) d( )

1


  

  ,  

where   is the relaxation time:1/ n  and 2  .  

The natural frequencies n  are far apart and it can be expected that Z between two natural 

frequencies 1  and 2  is mainly determined by these two processes:  

   
2 1 1 2 2

2 2
1 2

K / K /
Z a

1 / 1 /

    
   

       

  (6.5.10)  

For   1 :  

2
21 2 1 1 2 2 1

1 12
1 21 2

a K 2K /K 1 K
Z 1 a K

2 2 K1 ( / )

      
       

     
  (6.5.11)  

because 1 2  . In the same way, for 2   , 2Z Z .  

2 1 1
2 2

2 2

1 K
Z a K

2 K

 
   

 
  (6.5.12)  

and because the spectrum is flat [6], or Z is about constant, is 1 2Z Z  and the stiffness 

must be equal or: K 1 2K K  . If for an intermediate value of  , 1 2( ) / 2    , Z is 

equal to 1Z  and 2Z , then 1 20.1   . Thus there will be a range of relaxation times: 
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i
i 0t (1/10) t  . Thus:   i

i 0 i 0t / t exp E /RT E /RT (0.1) exp( i ln(10))      or:  

i 0 0E E RT i ln(10) E 1.35 i         (6.5.13)  

and there will be a long range of activation energies in kcal./mol. of for instance:  

23 - 22 - 20 - 19 - 18 - 16 - 15 - 14 - 12 - 11 - etc. However measured by other methods are 

p.e. 23 and 11 kcal./mol. (β - mechanisms). Thus it is necessary that in eq.(6.5.8) in a wide 

range:     /    constant rc2 /KA c2 t /K      (6.5.14)  

and the flat spectrum is determined by only one process with relaxation time rt .  

The analysis shows that v  is alternating and thus is reversible.  

A particular solution of eq.(6.5.4) is:  

   1C exp A K t C exp 2 t       ,  (6.5.15)  

showing that a disturbance disappears within a part of the period. For instance in half the 

period time is   C exp 0.04 C      .  

For high loading:  

 v
v 1 v

1 2
ln K

A

 
      

  
     or:    

 1 1 vK K

v2 A e
  

          or:  

   1 v 1K K

1 v 1K e d e K A / 2 dt
            

Thus:  

c
1 v 1 v0 1

t
K K K

1 1
0

n
e e K Ae dt n C

2

                 

where ct  is the time of high stress within the period and n is the number of cycles. Thus:  

 1 v0K

1 v 1 v0 1K K ln 1 C n e
 

           (6.5.16)  

For higher values of n:      1 v0 1 v0K K

1 1 0ln t C n e ln C n e ln n / n
   

      and eq.(6.5.16) 

becomes:  

 1 v 1 v0 0K K ln n / n         (6.5.17)  

Outside the high stress region the stress and v  resume quickly, according to eq.(6.5.15), 

the low stress values (as described by eq.(6.5.1) to (6.5.8)), but v  has increased according 

to eq.(6.5.17). At high frequencies this increase is small and v  is mainly determined by 

sin( ) of the low stress region. If, for comparison with static long term loading, mean val-

ues of stress and strain are regarded, then:  

         1 2 1 v0 02 / (K K ) 2 / K 2 / 1/ ln n / n              or: 

 0 0 0

1 n
1 ln

2 / 3 n


  

   
  (6.5.18)  

This equation thus applies for high frequencies, empirically for frequencies above 1 Hz up 

to 10
4
 Hz. For cases where peak-stresses play a role, as at knots, in particle board and at 

finger joints, it can be deduced from the regression lines, given in [7], that the empirical 

fatigue equation is:  

 
0

1.14 0.103 log n

  


       ( 1  at the delay time at the start) (6.5.19) 

For low frequencies, sin( ) is small and the increase of v  is curvilinear and now also the 

factor 2/  on its top value applies, giving:  
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0 0 0

1 n
1 ln

n


  

   
  (6.5.20)  

This equation applies below about 0.1 Hz. for wood. Depending on the frequency, fracture 

may occur in a few cycles. However, this equation can be written in a total time to failure: 

0 0 0 0 0

1 t 1 t
1 ln 1 ln

t t

   
     

     
  (6.5.21) 

and this equation is identical to the long duration strength of a specimen loaded by a con-

stant load, equal to the top value of the fatigue loading. The empirical equation of this long 

duration strength is:  

0

1.17 0.070ln(t)

 


          ( 1  at the delay time, at the start)   (6.5.22)  

showing that the slope of the high frequency line is indeed about a factor 1.5 steeper. Or 

more precise: 0.103/.070 = 1.47. If there is a stress level where below there is no fatigue or 

no failure for long term loading, then the maximum strain condition predicts that this level 

will be a factor 1.47 lower for high frequency loading. Because the stress level for no dam-

age at long term loading is supposed to be 0.5, the fatigue level is about 0.5/1.47 = 0.35. 

This is in agreement with the expectation from tests on rotor-blades (of NASA).  

For very low frequencies (lower than about 610  Hz), recovery may occur at the period of 

unloading and only the sum of the loading times have to be taken for t in eq.(6.5.22). Thus 

it follows that at least half of the "permanent" strain at higher stress levels is recoverable. 

For a small initial flow unit density: vA B  , the analysis is comparable as done before 

and as done for static loading.  

 v
v 1 v

v

1 2
ln K

B

 
      

  
       or:     1 vK ( )

v v2 B e
 

          or:  

    1 v 1K K

1 v

B
e d ln K e dt

2

    
     

 
  

Thus:       
c

1
t

K

i 1 v i 1 v0 1
0

n
E K E K B e dt n C

2

              or:  

  1

1 v i 1 1 v0K E n C 0.577 ln K                (6.5.23) 

and there is a delay time for fatigue. The fatigue line starts with a small slope and bends 

down at higher values of n to a straight line on log(n)-scale. Because for higher values of 

v  and n, this equation becomes:  

    1 v 1 v 1 1 v0exp K K n C 0.577 ln K                    or:  

    1 v0K

1 v 1 v 1 1 1 v0K ln K ln C n n e K
 

               or: 

1
1 v 1 v0

0

n n
K K ln

n

 
      

 
   (6.5.24)  

the same fatigue equations occur as given before, however in a shifted position on the 

log(n)-axis.  

A delay time is not to be expected for particle board, because of the high concentration of 

holes. Knots in timber act however as flow units with a low density, as can be seen by the 

strong yield drop in a constant strain rate test, and timber will show a delay time for fa-

tigue.  
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7. Explanation of the mechano-sorptive effect  
 

Discussed are the derivations of B(1989a) and the further development in B(1989b). In 

B(1989a), part of the differential strain rate between the layers was defined as a separate 

mechano-sorptive strain. This however appeared to be superfluous and the straightforward 

exact derivation of B(1989b) is now retained in the following.  

 

7.1 Small changes of moisture content at low stresses  
 

At constant moisture content or moisture gradient, moisture acts as lubricant, reducing the 

relaxation time of wood. At changing moisture content, the behavior of adjacent layers can 

be very different because one layer may shrink and the other may elongate, with respect to 

the free volume change. The S2 layer elongates in axial direction (by the steeper microfibril 

angle) and shrinks perpendicular to this direction at desorption while the other layers be-

have reversed from this with respect to the stress free expansions. This causes high internal 

stresses and extensive flow and shifts of the layers with respect to each other.  

The kinetic equation of layer deformation is similar to that of a Maxwell element (a spring 

with a non-linear dashpot on top) with a parallel spring. When, in a stress relaxation test, 

this three-element model is loaded to 0  at strain 0  at time 0t , then the Maxwell element 

is loaded to v0  and the free parallel spring to 0 v0  , what remains unchanged when by 

relaxation, the stress v  on the Maxwell element decreases.  

For relaxation of this three-element model 0   and for the Maxwell element:  

e v 0      ,   or:   v 1 vK 0       or:    v 1 vK Asinh 0     (7.1)  

At changing moisture content conditions there is a rapid reaction of water with the hydro-

gen bonds. Thus a low activation energy and activation volume can be expected and the 

equation for relaxation may be approximated to:  

 1 1 1 1 1 1K Asinh K A' 0           (7.2)  

as follows from the exact derivation of diffusion behavior in section B.2. The free overall 

swelling is subtracted because this has no influence on the stress.  

Thus, in eq.(7.2) is  1 1sinh    , A A'   (in accordance with thermodynamics and 

reaction order) and   is the change in moisture content. Thus the starting equation is:  

1 1 1K A' 0      (7.3) 

For creep, the same equation applies with 1K  replaced by K (1/K = 1/ 1K  + 1/ 2K ).  

The solution of eq.(7.3) is:   

1 1

0

ln K A t K A' t
 
     

 
  (7.4) 

where   is the suddenly applied (step-) difference in moisture concentration.  

This eq.(7.4)  is based on the bond breaking process and can also be obtained by the rate 

equation of bond breaking:  

k      (7.5)  

where   is the concentration of mobile bonds, having as solution:  

0

ln k t
 
  

 
  (7.6)  

and it is seen that this result is identical to eq.(7.4). Thus the stress supported by the reac-

tive bonds is proportional to the number of bonds and the ratio 0/   can be determined 
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from the stress relaxation test (or from creep tests).  

These equations apply for very thin specimens, where the step-change is approximately 

possible. For thicker specimens, the moisture has to diffuse into the specimen. Diffusion is 

discussed and derived in B(2005) §2.3. From Fick's second law, (based on random walk of 

jumping elements only, thus applying for low or zero stresses only), the moisture concen-

tration rate for a long, round specimen is:  
2

2

d 1
D

dt r r r

   
  

  
  (7.7)  

The solution of this equation is [1]:  

 

 

2
0 n n

2
n 10 n 1 n

J r4 4D
1 exp t

d J d d





  
   

    
   (7.8)  

where 
0  is the concentration, surrounding the specimen; D is the diffusion coefficient;  

n  is the n-th root of the zero-order Bessel function; d the diameter of the specimen and 

nJ  is the Bessel function of the order n.  

Because stress relaxation in tension or compression depends on the mean stress and strain 

in the specimen, only the mean concentration is of importance. Thus the average concen-

tration therefore is:  
2

d/2
n

02 2 20
n 1 n

4 4 4D
2 rdr 1 exp t

d d





  
       

    
   (7.9)  

Substituting   in eq.(7.3) or eq.(7.5) will give the measured stress- or bond decay. Be-

cause only the first term of the summation is of importance and the other terms may be 

neglected the equation becomes:  
2 2

1
0 14 2

0 1

d 4D
ln k t exp t c

D d

    
        

       

   (7.10)  

or for the stress with 1c 1   as boundary condition:   

2 2

1
1 0 4 2

0 1

d 4D
ln K A' t exp t 1

D d

    
        

       

 (7.11) 

where 1 2.405   is the first root of the Bessel function.  

For longer times the exponential function is approximately zero, thus this line becomes:   
2

1 0 4

0 1

d
ln K A' t

D

  
     

   
   (7.12)  

The intercept of this line with the time axis thus is: 2 4

1d / D , showing the time lag due to 

diffusion. This equation applies exactly for e.g. human hair [1], where there is no swelling 

or shrinking during wetting and drying. At moistening the stress quickly dropped to about 

1/3 of the applied value. At drying the stress totally restores to the initial level before wet-

ting in the relaxation tests. Thus this work is due to the chemical energy of bond refor-

mation (heat of fusion) as also applies for the slight restoring of the stress at moistening of 

wood. Tests with alkali hydroxide solutions on cotton, which has a comparable structure as 

wood, showed an instantaneous relaxation as rapidly as the solution could be added. After 

that, a slower process occurred of conversion of the crystalline regions into an amorphous 

structure. The instantaneous stress reduction indicates a very fast reaction where equilibri-

um is directly reached according to the reaction:  
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 f

b

k

0
k

         or: .  

 f b 0k k 0        (7.13)  

or:      b 0 b 0

f f 0

k k /

k k 1 /

   
    

   
   (7.14)  

where  0 0 0/ /      . Thus 
0/   is about proportional to   

0( / 1)   , but 

this relation bends off to a limiting value at high values of    according to the measure-

ments [1] and eq.(7.14). The limiting value for alkali-hydroxides at high concentration 

seems to approach unity according to eq.(7.14), indicating that the structure of cotton may 

be completely accessible for alkali reagents. This reaction with both the amorphous and 

crystalline regions followed also from X-ray diffraction experiments. Because    is not 

noticeable dependent on the temperature, the activation enthalpy will be small.  

For strong acids 0/   approaches a limiting value well below 1, being of the same order 

as the quantity of disordered regions as follows from X-ray measurements. Thus 

0 lim( / )   can be expected to be a direct measure of the accessibility of the amorphous 

regions. The linear increasing value of 0 lim( / )   with temperature, in concert with a 

negative entropy increase, which shows the equilibrium between ordered and disordered 

regions. The equilibrium constant Kc is:  

 

 
0f m lim

c

b 0 lim

/k
K

k 1 /

 
 

  
   (7.15) 

and the energy of cellulose conversion is: f b cE E RTln(K )   , what was found to be 4 

kcal/mol. The same can be expected for wood. Because acids effect only the amorphous 

regions and because the limiting value of the instantaneous reduction is far below 1, there 

is no cross section totally disordered and the ordered region is the continuous phase.  

The nature of the reagents and the rapidity of the reactions indicate an attack of secondary 

hydrogen bonds between the cellulose chains. After removal of the reagents, some types of 

bonds are unable to move back against the force to assume their original positions, but 

combine with new neighbors in a relaxed position.  

The influence of water on the hydrogen bonds is comparable with the influence of acids 

because only the amorphous regions are effected and 0/   will be proportional to  . 

Although there is an immediate reaction with water, there is no instantaneous stress drop in 

a relaxation test because the water has to diffuse into the structure and the rate of diffusion 

determines the reaction rate with the hydrogen bonds. There thus is an equilibrium and any 

change of moisture content gives a reaction close to the equilibrium at the rate of the mois-

ture supply. For the reaction near equilibrium, eq.(7.13) becomes:  

   f b 0 f 0k k k          (7.16)  

where:    0 b 0 fk / k       is the equilibrium moisture content (where 0  ).  

Eq.(7.9), giving a moisture increase from zero to 0 , is, for the first expanded term, with a 

rounding off to account for the other terms, approximately:  

  s 1 exp at   ,  (7.17)  

where 2 2 2

1a 4D / d 23D / d   , and s  is the saturation amount of adsorbed water.  

For a loaded test specimen, with a moisture content 0 , that is placed in a dry environment 

causing a moisture content of 0 - s  after long time, eq.(7.17) modifies to:  
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  = 0 - s + s exp(-at)   (7.18)  

and the solution of eq.(7.5), which applies in the first stage, becomes:  

      0 0 s s

k
ln / k t exp at 1

a
             (7.19)  

or with eq.(7.18):  

     0 0 0 s

k
ln / ln '/ '

a
         (7.20)  

where:    0 0 sln '/ ' k t       is the relaxation (or creep) at the constant equilibrium 

moisture content 
0 s  . The same solution is obtained from eq.(7.3) and the equations 

can be read by replacing   by   and with 
1k K A'   for relaxation and k KA'   for 

creep. Thus eq.(7.20) for desorption becomes:  

     0 0 0

k
ln / ln '/ '

a
          (7.21)  

It follows that:       0 0 0ln ( ' ) / ( ' ) c       ,   is a straight line, that is the same as 

given empirically in [2] and fig. 7.1. where:  0   is the amount of desorbed water.  

 

 
Fig. 7.1. Comparison of the theoretical equation (7.21) with measurements of [2] 

 

For adsorption, when a loaded test specimen with a moisture content 0  is placed in a wet 

environment, causing a moisture content of 1  after long time, eq.(7.17) modifies to:   

1 1 0( ) exp( at)        (7.22)  

and the solution of eq.(7.5) is:  

     0 1 1 0

k
ln / k t (exp at 1)

a
              (7.23)  

or:         0 1 0

k
ln / k t

a
          (7.24) 

or:           0 0 0

k
ln / ln '/ '

a
          (7.25)  
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where:  0 1ln '/ ' k t     , is the relaxation at constant maximum moisture content 
1 . 

This equation is identical to eq.(7.20) if the adsorbed amount: 
0  can be regarded as a 

negative desorption. Eq.(7.20) shows that there is an increase of deformation on drying and 

eq.(7.25) shows a restoring of the bond structure on rewetting. Thus there is at least one 

dominating element with an opposed behavior to other materials. These phenomena by 

sorption can explain the mechano-sorptive effect, which derivation is discussed in § 7.2, 

when not only hydrogen bond fail, but shifts of layers with respect to each other occur at 

high loading and high moisture content changes. This behavior can be described by two 

parallel Maxwell elements. The deviation at higher moisture changes shows that eq.(7.1) 

applies, thus a departure from the linear approach eq.(7.3) of simple hydrogen bond failure.  

 

 

7.2. Influence of high stresses and moisture content changes  
 

Interesting for mechano-sorptive effects is creep loading at sufficient high stresses, when 

flow and slip occurs, and sinh(x) can be approximated by (exp(x))/2. The strain rate equa-

tions are similar to those of  two nonlinear Maxwell elements 1 and 2 (see Fig. 7.2) which 

are:  

 1
1 1 1 m

1

A' exp
K 2

 
          (7.26)  

 2
2 2 2 m

2

A' exp
K 2

 
         (7.27)  

In these equations 2 1    or: 2 1 1     , because the total external stress   is 

constant. The material thus is divided in two types of layers, one with mechano-sorptive 

slip m  at desorption and recovery at adsorption, and one with the more common reversed 

behavior. Elimination of   from eq.(7.26) and eq.(7.27) gives:  

   1
1 1 1 2 2 2 mA' exp A' exp 2 0

K 2 2

  
           (7.28)  

where 1 21/ K 1/ K 1/ K  . 1 21/ K 1/ K 1/ K   and m2  is the relative strain rate of the 

adjacent layers  r . Because the process is a matter of side bonds breaking it has to be as-

sumed that the sites of both parts are the same for the mechano-sorptive effect, or: 

1 2     , and eq.(7.28) becomes ( 2 1   ):  

  /21
1 2 1 1 2 me A' A' sinh / 2 ln A' A' 2 0

K


           (7.29)  

The mechano-sorptive rate of bond-breaking has the form:  m Asinh A     ,  

for small stresses as used before. For high stresses is:  m (A / 2) exp    .  

This rate is zero for constant moisture content and is proportional to the rate of change of 

the moisture content. Thus m2  can be given in the form:  

m 1 2 1 2

1
2 A' A' exp A' A' exp sinh(c)

a 2 2 a 2

     
      

  
  (7.30)  

With:  at

0 e 0( ) 1 e      , is:  e / a     and eq.(7.29) can be split in a  

creep equation at the constant moisture content e :  

  /21
e 1 2 1 1 2e A' A' sinh / 2 ln A' A' 0

K


         (7.31) 
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and in a mechano-sorptive change:  

  /21
1 2 1 1 2 me A' A' sinh ( / 2) ln A' A' 2 0

K a

 
            (7.32) 

the same as is done for small stresses in § 7.1, leading to the same equation with the same 

linear increase with time t for small stresses.   

Substitution of eq.(7.30) in eq.(7.32) shows that a particular solution of eq.(7.32) is:  

 1 1 1 2

1
ln A' / A' c

2 2


        (7.33) 

The general part of this equation is:  

  /21
1 2 1 1 2e A' A' sinh ( / 2) ln A' A' 0

K a

 
         

and integration of this equation has the form:  

d(x)
c d(t)

sinh(x)
    ,            

or with:     at

0 e 0 1 e     , where e  is the moisture content at the end, this is:  

   at0 e
1ln tanh x / 2 C e C

a

  
  

 
  

or in terms of eq.(7.32) this becomes:  

  /2 at1 e 0
1 2 1 1 2

1
ln tanh ln A' / A' C Ke A' / A' e

2 4 4 a

        
      

   
   (7.34)  

again similar to the equation of § 7.1 for small stresses.  

Calling:   /2 at /2e 0
1 2 1 2 ep Ke A' / A' e Ke A' / A' ( )

a

    
      

 
 

eq.(7.34) becomes:  

   1
1 2 1

1
ln A' / A' arctanh(exp p C )

2 4 4

 
       (7.35)  

and the total solution is:  

   1
1 2 1

1 c
ln A' / A' arctanh(exp p C )

2 4 4 2

 
       (7.36) 

The value of 1C  follows from the initial value 1 10   . For this case is:  

 1,0

1 2 0 1

1 c
ln tanh ln A' / A' p C

2 4 4 2

   
     

  
   (7.37) 

Substitution of eq.(7.37) in eq.(7.36) gives:  

 1
1 2

1 c
ln A' / A'

2 4 4 2

 
     

= 
   1 2 0K A' /A' exp( /2) /a10 20 1 2ln A' / A' 2c

arctan h tanh e
4

    
    

   
  

   (7.38) 

Calling:  1
1 2

1 c
q ln A' / A'

2 4 4 2

 
    .    then this equation becomes:  

    1 2 0K A' /A' exp( /2) /a

0q arctanh tanh q e
    

   

For small values of 0q   this becomes:  

 1 2 0K A' /A' exp( /2) /a

0q q e
    

         or:  
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       1 2 0K A' /A' exp( /2) /a

1 10 20 10 1 2

1
ln A' / A' 2c 1 1 e

2

    
              (7.39)  

For high values of q is:   tanh(q)  ≈ 1, and:    
  1 2 0K A' /A' exp( /2) /a

q arctanh e
    

  

and because: 
x

x

x

1 1 e 1 x
arctan h(e ) ln ln coth

2 1 e 2 2

   
     

    
   is:  

     /21
1 2 1 2 0

1 c 1
ln A' / A' ln tanh K A' / A' e / 2

2 4 4 2 2

 
          (7.40)  

For not too high moisture changes this becomes:   

    /21
1 2 1 2 0

1 c 1
ln A' / A' ln K A' / A' e / 2

2 4 4 2 2

 
          (7.41) 

and for high values of:    /2

1 2 0K A' / A' e / 2    ,     eq.(7.40)  turns to:   

 1
1 2

1 c
ln A' / A'

2 4 4 2

 
    ≈ 0   (7.42) 

This is also the limit of eq.(7.39) for high moisture changes at small stresses 0q .  

According to eq.(7.30) is:  

m

1 2

c 1 4 a
ln

2 4 2 A' A'

 
    

  (7.43)  

and the maximal mechano-sorptive stress 1  of eq.(7.42) is:  

m
1

1

4 a
ln

A'

 
   

 
  (7.44)  

For high moisture changes (p.e. 0  maximal and e 0  ), this is r m( 2 )     

m

1

1

4
ln

A

 
   

 
 and this is at the level of the flow stress:  

r
1

1

2
ln

A

 
   

 
    of element I (see for instance eq.(5.2.16)).  

Thus flow of the elements limits the maximal possible mechano-sorptive stress.  

An other aspect of eq.(7.44) is that: 1A / a  is proportional to:  1 dexp E / kT E / kT   and 

the activation energy of the process is the difference of the activation energy for creep and 

for diffusion, explaining a low retardation time or an high rate of the process.  

 

 

7.3 Influence of ultimate flow stresses and moisture changes  
 

In order to avoid complex calculations for creep at high moisture cycling and at higher 

stresses it is sufficient to use the property of the non-linear Maxwell elements of an ap-

proximate elastic-full plastic behavior (see e.g. fig. 5.4). This model can be compared with 

the model of [3] that consists of two parallel strings each consisting of a Maxwell element 

and a Voigt element in series. This is totally equivalent to a model with four parallel Max-

well elements and these four parallel linear Maxwell elements can be replaced by two par-

allel Maxwell elements with non-linear dashpots, because those dashpots contain one more 

parameter than the linear dashpots. Thus it follows that each of the two strings of [3] can 

be replaced by a spring attached to a non-linear dashpot which behaves identical to the de-
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rived sorption equations. The loading of the two parallel strings in a creep test in the model 

of [3] was done by a running block that moved the total load between the strings by means 

of a hygroscopic element. This block may however be removed because this sorption ef-

fect is given by eq.(7.20) or eq.(7.39) and the behavior of the hygroscopic material is ex-

actly the same as can be seen in eq.(7.19) where the part: 

   sk / a 1  e  a( )xp t    is identical to the time function of that element. The swelling 

and shrinkage is proportional to the adsorbed amount of water and has also this form: 

  s 1 exp at    . In the model of [3] it is also assumed that the viscoelastic con-

stants change according to this function, however eq.(7.19) and eq.(7.31) show immediate 

creep at the equilibrium moisture content of the end state and also this changing constants 

function may be removed. In [3] it is also assumed that there are two diffusion processes, 

one slow process of sorption, eliminating the differential shrinking with a = 23D/d
2
 = 0.06, 

and one quick process with a = 0.5, effecting the load bearing bonds. In most tests the 

change of moisture content is slow and the result has to be regarded as a suc-

cession of end states due to these two processes. The influence of the slow 

process can be eliminated by subtracting the strains of the dummy from the 

strains of the loaded specimen at moisture cycling.  

In § 7.3.1 and § 7.3.2 are, for respectively compression and tension, the 

schemes given of the influence of moisture cycling, where the two elastic- 

plastic elements consist of: II, the layers with a dominating slip at desorption 

and I, layers with a pronounced slip at adsorption, which show, (in point A)   

                                         more shrinking and swelling than the layers of II.   

Fig. 7.2 Maxwell elements The initial loading of element I and II is: 1 2P P P    

 

7.3.1. Explanation of the data of Fig. 7.3.1 and Fig. 7.3.2. 
 

To compare models, the mechano-sorptive forces can be divided in a part that eliminates 

the differential shrinking and a part that interacts with the loading as done in [3]. In an un-

loaded dummy only the first part is working. For an initial wet unloaded specimen, the first 

drying cycle will give the following forces: 

   

slip due to desorption in II 

  

recovery of slip in I.  

 

force due to differential shrinking of I.  

 

         I       II The differential shrinking: sh  will cause the shrinking force: sP .  

The strain:   of element I will be the same as of element II. Thus, with   as free shrink-

ing of the specimen, is: 

 I: sh s 1P / K        

II: s 2P / K                   From I - II follows:    s 1 2 shP 1/ K 1/ K    

In II there will be a slip: m1  at drying in the direction of the compressive force sP  and the 

mechano-sorptive force m2P  will be against this force. In I there will be recovery of exten-

sional slip: m1  and a force m1P  in the direction of the tensile force sP .  

Thus: :  
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 I: sh s 1 m1 1 m2 1 m1P / K P / K P / K             

II: 
s 2 m1 2 m2 2 m2P / K P / K P / K             I – II:     m2 m1 m2 m1P P / K       

where:   1 21/ K 1/ K 1/ K                               

It is possible that the mechano-sorptive forces eliminate the shrinking forces if drying is 

slow enough for interaction. Then: 
s m1 m2P P P 0    and   

 I: 
sh m1        

II: 
m2                   Thus I – II gives:    

m1 m2 sh        

and 
m1  is limited by the amount: 

sh .  

For a loaded specimen the mechano-sorptive force can be divided in the part that occurs in 

the dummy and the part that interacts with the external forces. In the following the correct-

ed strains, by subtraction of the dummy values, will be regarded. This will be compared 

with the measured values of [4] for compression that has the strongest mechano-sorptive 

mechanism with plastic deformations. For drying at compression is:  

 

initial values of the external load 

sorptive bond breaking causing slip: m2  in II, and resultant flow f  in II 

m m1 m2P P P    

Total forces: 1 u1P' P , the flow stress of element I, and 2 u1P' P P  .  

Thus:        m u1 1P P P  .    

The initial deformation by the external load: 1 2P P P   is:  

 0 1 1 2 2 1 2P / K P / K P / K K       

As can be seen in fig. 7.3.1, mP  will cause a deformation of: 04 . Thus:  

 

 I:  0 u1 1 1 f4 P P / K        

II:  0 u1 1 2 m24 P P / K        

The loading level is about 40 %. Thus by the ultimate load is the elastic deformation: 

 u1 1 u2 2 u 1 2 0P / K P / K P / K K 2.5     .   Thus: 

 

 I: 0 0 f 02.5 4              f 02.5       (7.45) 

II:    1 2 0 0 m2 0K / K 2.5 4             m2 0 0 1 24 1.5 K / K        (7.46) 

On rewetting the specimen, after the first drying cycle, mP  changes of sign and the forces 

will be:  

 

initial values  

 

elastic forces by slip and flow  

 

Total forces: 1 m u1P' P P    (= u1P  for low loading giving flow back of I)  

2 u1 mP' P P P    (= u2P  for high loading giving flow of II).  

For low loading, element I may flow back and the strain at the end of the cycles show little 

or no change as mentioned in [4] for compression at the loading level of 24% and also can 

be seen in fig.7.3.8 during the second humidity cycle. For higher loadings 2P'  may reach 
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u2P . Then there is an increase in flow and slip in each cycle and the maximum deformation 

will not tend to a limiting value but increases until fracture. This is discussed in § 7.3.2, 

and is verified by measurements, e.g.in [5] for bending.  

Fig. 7.3 suggest that 2P'  may just have reached u2P  and the increase of deformation after 

each cycle is determined by the creep part for constant e . It is probable that there is one 

limit for flow forwards and backwards and also 1P'  just reaches u1P . Then:  

1 u1P' P  and: 
u2 u1P P P   and because:  u u1 u2P 0.4P 0.4 P P   , is:  

u1 u21.4P 0.6P ,    or:    
u1 uP 0.3P ,    and     u2 uP 0.7P ,  

and because the stiffness is proportional to the potential energy of the bonds it is to be ex-

pected that:  

1 tK 0.3K    and   
2 tK 0.7K   (7.47)  

where t 1 2K K K    

According to eq.(7.46) is:    m2 0 0 1 2 0 04 1.5 K / K 4 1.5 0.3 / 0.7 4.7           .   

The recovery of slip at rewetting is about 2.5 0 . drifting to 2.7 0  (see fig. 7.2). Taking 

2.6 0 , the strains are, with m u1P 2P , or with m 1 u1 1 0P / K 2P / K 5 :     

 I: m 1 m1 0 0 m1P / K 2.6 5               m1 02.4   .   (7.48)  

II:  m 1 m2 0 1 2 0 m2P / K 2.6 K / K 5              

    0 m2(0.3 / 0.7)5          m2 04.7       (7.49)  

It is seen that m2  is the same for drying as for rewetting. The difference 

m2 m1 0 2.3     is equal to the part m2  for the dummy which is used with opposed sign 

to eliminate the differential shrinking. Thus sh  is smaller than or equal to 02.3  .  

An analogous scheme for an initial dry specimen on first wetting is:  

 

initial values 

elastic forces by internal slip and flow   

 

Total forces: 2 u2P' P  causing flow of element II; 1 u2P' P P   

The change of the force is: m u2 2P P P     

The measured change of strain is 01.5   and if m  is the resultant slip and flow, this strain 

is:  

II:  0 u2 2 2 m21.5 P P / K       

 I:  0 u2 2 1 m11.5 P P / K        

This leads to:  

II: 0 m2 0( 2.5 1) 1.5                               m2 03             (7.50)  

 I:     2 1 0 m1 0K / K 2.5 1 1.5               m1 02    (7.51)  

These values of m  show that there is flow in both elements as also can be expected from 

the foregoing for this case of loading to the flow limit. Thus also 1P'  reaches u1P . As a 

control, the equations are then:  

 

II:  0 u1 1 2 m21.5 P P / K        

 I:  0 u1 1 1 m11.5 P P / K        
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or:   0 0 m21.5 2.5 1 0.3 / 0.7              
m2 03    (7.52)  

     0 0 m11.5 3.5    .           
m1 02    (7.53)   

as to be expected. 

 For re-drying the specimen, after the first wetting cycle, the forces are: 

  

initial values 

 

elastic forces by internal slip and flow 

 

Total forces  
1 u1P' P  and because 1 u2 u1P' P P P    , is  

 m u1P 2P 1.5P      

The measured change of strain is 2,7
0 , Thus, with 1 tK 0.3K  and 

2 tK 0.7K  the strains 

are:  

 I:  m 1 m1 0 m1 0P / K 1.5 / 0.3 2.7                     m1 02.3      (7.54)  

II:  m 2 m2 0 m2 0P / K 1.5 / 0.7 2.7                      m2 04.8   .  (7.55)  

The difference m2 m1 02.5     is equal to m2  of the dummy. Because the change of 

the strain of the dummy is also about 02.5  , is m1P  of the dummy about zero and also m1  

and   will be zero. Thus the free swelling and shrinking  can be neglected and the dif-

ferential shrinking or swelling will be about: sh 02.5    in this case.  

 

The, for an explanation necessary, opposite behavior of adjacent layers follows from ex-

pansion movements. When the S2 layers shrinks, the microfibrils become steeper, causing 

extension in grain direction, while at the same time the adjacent layers shrink in grain di-

rection and expand perpendicular to grain in their microfibrils direction (see fig. 2.1.3 and 

§ 2.2.2). In § 7.3.2. the schemes are given of the influence of moisture cycling at tensional 

loading. for the conditions of contained flow. The schemes however also may apply for 

compression and deliver an extension of the mechano-sorptive model.  For bending the 

situation is complex because every layer has another plastic and elastic deformation and 

the tests, and a first analysis, show that the lever arm between compression and tension 

will be strongly reduced by the different behavior of the compression zone and the tension 

zone on moisture cycling.  

It can be concluded that the theory makes it possible to understand and to describe the 

mechano-sorptive effect. The model predicts that for large dimensions of the test speci-

mens, when a = 23D/d
2
 is sufficient small, there will be only a small force exchange be-

tween the layers and the mechano-sorptive effect is not important. This does not apply for  

toothed plate  and ring dowel joints, as discussed in § 7.3.3, where the diameter of the 

loaded core d is small and diffusion is easy in grain direction. It thus is necessary to block 

the accessibility for water by glue and paint.   
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fig. 7.3.1 Strain ratio-time and moisture content-time curves for initially  

green compression specimens at moisture cycling [4].  

 

 

 
 

fig. 7.3.2. Strain ratio-time and moisture content-time curves at moisture  

                 cycling for compression, initially at 4% moisture content [4].  
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7.3.2. Explanation of contained flow as measured in [5]. 
 

In the following scheme of B(1989b), the elastic-plastic elements consist of II, layers with 

a dominating slip at desorption and I, layers with pronounced slip at adsorption, which 

show (in point A) more shrinking and swelling than the layers of II. 

 

 external stress P  

 

 

 

spring 

 

possibility of slip in both directions 

 

initial loading of elements I and II 1 2P P P    

Fig. 7.2. 

 For an initial wet specimen, the first drying cycle will give:  

 

 

initial values 

sorptive bond breaking and reformation in a shifted position of II 

(force due to shrinking of element I) 

 

 

Total forces: Pm may reach the order of P2 in II. However, in I: P1 + P2 ≈ P > Pu1 where Pu1 

is the force of flow of I. Thus  1 u1P' P  and 2 u1P' P P  . And there will be a large flow of 

I and a large slip of II. The shrinking force sP  cannot occur because of flow of element I. 

For small values of P, e.g. P = 0, Pm will not develop because the  bonds are not stressed 

and will after breaking by a moisture content change, reform in the same position. Because 

the bond breaking process is eight times faster than the development of the shrinking 

stresses, the process will be finished before the shrinking stresses occur, and it can be ex-

pected that an unloaded specimen will get only the internal shrinking stresses on drying 

and wetting (swelling stresses).  

For rewetting of the specimen, after the first drying cycle, the forces will be:  

 

 

initial values due to the first drying cycle 

due to sorptive bond and slip restoring II and slip of I 

(force due to swelling of element I) 

 

 

Total forces in general: 1 m u1 u1P' P P P   , except for unloading, and 

2 u1 m u1P' P P P P     and the recovery of the deformation will be approximately: m 1P / K .   

Also in the next drying and rewetting cycles, the increase and decrease of the deformation 

will be about this amount and increase of the maximal deformation and decrease of the 

amplitude will depend on the slow creep process, giving an additional stress redistribution . 

Stresses due to differential shrinking and swelling will have an influence at a later stage.  

For high loading 2P'  may reach u2P . At this point there is an increase in flow and slip in 
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each cycle and the maximum deformation will not tend to a limiting value but increases 

until fracture. This also is known from measurements e.g. in [5] where, for P of about one 

eighth to one quarter of the ultimate load, this boundary of flow of element II is reached 

for bending. A analogous scheme for an initially dry specimen on first wetting is given 

below.  

 

initial values 

sorptive bond restoring of II and slip of I 

(force due to swelling of element I) 

 

Total forces: 2 u2P' P , causing flow of element II. 1 u2P' P P  . 

Element I slips and will get the swelling movement, and is hardly noticeable as external 

movement.  

For re-drying the specimen, after the first wetting cycle, the forces will be: 

initial values 

sorptive bond breaking and reformation causing slip in II 

(force due to shrining of element I) 

 

 

Total forces: 1 u1P' P  in general, and the increase of defor-

mation wil be of the order of m 1P / K . Also in the next drying and rewetting cycles, the in-

crease and decrease of deformation will be approximately this amount, and the increase of 

the maximal deformation at each cycle will depend on the slow creep process giving an 

additional stress redistribution. For greater loadings 1P'  may reach u1P  and the stress situa-

tion of the first drying occurs. However, in that case, there will always be an increasing 

slip at each cycle loading  to fracture when the ultimate strain condition [] is reached.  

 

7.3.3. Influence of the mechano-sorptive effect on connections. 
 

All figures 7.3 are from [13]. In the context of the war of CIB-W18 against theory, it is 

stated in [13] that a linear approach is sufficient accurate and is justified, contrarily to re-

ports of the Stevin-laboratory (Ploos van Amstel - van der Put) where it is shown that any  

 

 
 

Fig. 7.3.3. |Creep lines of nailed joints at 30% load level []  
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extrapolation from linear fitted data, over any time range, provided a total wrong predic-

tion of the later measured behavior. The fact that a faint part of a logarithmic curve, or ex-

ponential integral curve can be approximated by the linear exponential time curve, is not a 

proof of linear behavior. Any faint curve also can be approximated by a parabola, what is 

not a proof that Boltzmann statistics does not apply. Further, the high data variability 

shows that the mean fitted curve to any theoretical equation, will cause an “exclusion of 

fit” (with a very high probability) for all 5 separated measured data curves. This means that 

the data of every curve should be separately fitted to the theory equations, which fit will 

show a correlation close to one, because of the molecular high number statistics. Every 

specimen thus is significantly (at the highest confidence level) an unique giant molecule. 

Linear viscoelasticity does not exist. The linear parameters only approximately may apply 

for liquids of round molecules and may only then approximately describe behavior at dif-

ferent loading histories. An example is given by § 7.1, where water molecule bridges be-

tween hydrogen bonds of adjacent layers may act as such a liquid at near zero stresses. 

For nailed joints, fig. 7.3.3 to fig7.3.6, the influence of the mechano-sorptive process is not 

strong, as follows from the small wavy curves at the start. The variation of the mean mois-

ture content at the bearing part of the nail thus is small. The lines of fig. 7.3.6. therefore 

still show the dominating time stress equivalence of wood at near constant mean moisture 

content. Regarding the processes in the layers, it is mentioned in § 5.1 that 2 processes are 

possible: One with B = 0 in eq.5.1.1 and one with A = 0 in eq.5.1.1. The first process de-

livers the sites of the second process. Therefore, this second process is not noticeable at the 

start of a creep test, and is, after long times, suddenly noticeable by a strong deformation 

increase as e.g. given by the sudden rises of the curves as also applies for the start of local 

failure (shear plug failure of the middle lamellae) in fig. 7.3.13 (following the exponential 

integral function, what should not be confused with the exponential function). Only for 

high loading this process is directly measurable at the start due to the shift of the loading 

curve to shorter times by the time-stress equivalence (see e.g. shifts of fig. 7.3.6)  

The process with A = 0, is a structural change process. It applies for damage increase but 

also e.g. for annealing and the most general solution of this differential equation is given in 

B(2010) or in Section B.3. applied to annealing. Fig. 7.3.6. shows this process by a long 

delay time before the steep rising branch at later times. An approximate solution (for pa-

rameter fitting) of this eq.(5.4.8) is given by eq.(5.4.16) which is a shifted equation with 

respect to eq.(5.4.5) and is then the same when A is replaced by vB . The slope of the 

lines of fig. 7.3.6. at higher times t follows from an analogous eq.(5.4.16) of the  creep fac-

tor:   
0 2 0

1
1 ln 1 c t t '

K


    

  
, 

is 2 01/ K  , which is independent of stress, temperature at a constant, mean, moisture con-

tent. Due to the time stress equivalence this curves shift to shorter times for higher stresses 

(see fig.7.3.6). This is opposed by the mechano-sorptive process, which acts on the chang-

ing moisture content conditions, and wherefore   is constant (as known since B(1989a)). 

The mechano-sorptive process acts during the first, or first two, m.c. cycles, until the adja-

cent layers are shifted to the position of the mean moisture content (m.c.) condition.  

For toothed plate joints, the mechano-sorptive process (with constant  ) dominates and 

creep lines 0    (and not the creep factor-lines 0/ 1   ) at different stresses, then are 

comparable with the same slope. The creep factor lines therefore show, after the first com-

plete cycle, which ends after about 300 days, the reduction of the creep factors by 01/   or 

relatively by 01/   of respectively: 1/0.30 ; 1/0.40 ; 1/050, for the 30%, 40% and 50% load 

level. Thus where, after 300 days, the mean creep factor ≈ 2, of the five, 30 % curves of 
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fig. 7.3.7, this creep factor is (30/40)∙2 = 1.5 for the 40 % curves of fig. 7.3.8 and 

(30/50)∙2=1.2 for the 50 % level curves of fig.7.3.9. This is in accordance with the meas-

urements of the figures, due to constant  . The slope of the logarithmic lines of fig. 7.3.10 

also show the slope difference according to a constant value of  .This tendency is less 

clear for split ring joints at the 50% level because of the start of dominating damage pro-

cesses at this load level (which fits should be subtracted). For less high m.c. changes of the 

tests in more controlled environment,  the logarithmic lines show no longer the dominating 

mechano-sorptive process with constant  , but a constant C ( 0  ) of a dominating time – 

stress equivalence. (see fig. 5.3.4 of [13]) as always dominates for nailed joints.  

Conclusions are only possible after the data fit to the right theoretical equations. As men-

tioned this should be based on the given solution of the annealing equation in B(2010) or 

Section B.3. Of interest is the highly non-linear damage function of the steep rises of the 

curves of fig 7.3.13, which show the form of the exponential integral function and repre-

sent shear plug failure of the middle lamellae. At constant climate conditions fig. 5.3.3. of 

[13] shows the necessary one creep factor line, independent on the load level, temperature 

and m.c. as follows from eq.(4.5.4).  

 
Fig. 7.3.4. Creep lines of nailed joints at 40% load level []  

 

 
Fig. 7.3.5. Creep lines of nailed joints at 50% load level []  
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Fig. 7.3.6. Average creep curves of 30%, 40%, and 50% nailed joints 

 

 
Fig. 7.3.7. Creep results of five toothed plat joint at 30% load level.  

 

 
Fig. 7.3.8. Creep results of five toothed plat joint at 40% load level.  
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Fig. 7.3.9.  Creep results of five toothed plat joint at 50% load level.  

 

 

 
Fig. 7.3.10. Average creep curves of toothed plate joint at 30%, 40%, 50% load level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.3.11. Creep results of five split ring joints at 30% load level.  
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Fig. 7.3.12. Creep results of five split ring joints at 40% load level.  

 

 

 
Fig. 7.3.13. Creep results of five split ring joints at 50% load level.  

 

 

 
Fig. 7.3.14. Average creep curves of split ring joints at 30%, 40%, 50% load level.  
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8. Experimental research  
 

8.1 Scope of the experimental program  
 

Testing is always necessary to show the predictions of the theory and the values of the pa-

rameters, dependent on temperature and moisture content. Because of the very small vis-

coelastic deformations, at constant rate tests, a precise determination has to wait until very 

accurate testing machines are available. The loading machine showed an oscillating behav-

ior, probably due to disturbances of the electricity network, that has an influence on the 

scatter of the data, especially at low loading. There was, however no noticeable drift of the 

machine. Because of the goal to measure the mean overall behavior, this was accepted and 

for that reason, also no corrections of the data were made for temperature differences 

around the mean temperature and dummy movements due to oscillating moisture differ-

ences. Because data are available for perfect constant humidity conditions, it was decided 

to use periodical relative air humidity conditions, as may occur in practice. The theoretical 

derivation leads to similar behavior as a parallel system of Maxwell elements with the gen-

eral strain rate equation (of element i) in accordance with thermodynamics:  

    i
i i i i i i i

i

A B sinh 1 C
K


             (5.1.1) 

where i  is the stress on the Maxwell element i, i  is the strain of the nonlinear dashpot 

and iK  is the spring stiffness. iA , iB , iC and i  are constants.  

The process, which is determining at the start of the creep test, shows no delay time and 

thus i iB   is negligible in comparison with iA in eq.(5.1.1) and also i iC   shows a negligi-

ble influence in the first creep stage. Because the relaxation times of the different processes 

are far apart from each others, only one process can be regarded. Thus the first estimate of 

the parameters has to be based on:  

   i
i i i

i

0 A sinh
K


      (8.1) 

for a relaxation test, and:  

   i
i i i0 A sinh

K


    , (8.2) 

for the creep test, with 1 2 1 2K K K / (K K )   .  

The solution of eq.(8.2) for the early part of the total creep process is: 

 
 1 2

v0

0 2 0 1 2

1 K K A t
1 ln 1 exp

K 2 K K

 
          

   (8.3)  

This equation has the form:  

Y = 1 + C∙ln(1 + t/T)  (8.4)  

Where t = time in seconds and T is a "delay" time in seconds.  

The estimation of the parameters C and T can easily be done by a simple regression proce-

dure.  

 

8.2 Test program  
It was planned to do creep and relaxation tests. However the parameters of both types of 

tests appeared to differ not much. Thus relaxation tests in tension were done, in combina-

tion with creep tests, to show this conformity with creep tests.  
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For comparison creep tests were done in compression, tension and shear, along the grain 

and perpendicular to the grain. According to table 8.1, 5x2x3 specimens are tested in creep 

mostly at 2 temperatures depending on the moisture content. Two series of test specimens 

were used, cut close behind each other from one board. One series was conditioned at 

about 45% relative air humidity, and the other at 85%. The tests were done on Spruce and 

the dimensions of the specimens are given below.  

 

Table 8.1 Overview of test-numbers  

Test-type humidity Load -type temperatture Specimen nr. 

1 compr. // 

2 compr. ┴ 

3 tension // 

4 tension  ┴ 

5.shear 

1   45 %  

2   85 % 

1 relaxation 

2 creep 

1 – 25 deg. 

2 +  5 

3 + 25 

4 + 50 

5 + 70 

1 to 3 

example: test-code 32241 is: tension 2; wet; creep test; 50 
0
C; specimen nr. 1.  

 

 
 

Fig. 8.1 Dimensions of the test-specimens  

 

The loading sequence of the tests (see fig. 8.2) was:  

The specimen is loaded at a constant strain rate to a stress level of about 70% of the short 

term strength, followed by a creep test during about 1 to 3 hours, depending on the defor-

mation. Then the load is decreased to the level of zero creep, what is found by a searching 

procedure, and maintained at this level during approximately 1 hour. At this level the 

"dashpot" of the 3-element model is unloaded and creep will not occur. Then, after unload-

ing, the recovery is measured. The times of each sequence depends on the amount of creep. 

With this loading cycle it is in principle possible to determine the constants of a three ele-

ment model. To maintain the different temperatures and moisture contents, climate boxes 

were used around the test-specimens. Before the loading, the three specimens of each test-

type, were conditioned in the climate boxes until the movement of the specimen due to the 

moisture exchange was small. Then the test was done on one specimen, while the other 

two served as dummy to detect weight differences due to change of moisture content. If the 

temperature was raised, higher relative humidity was sometimes necessary to stop the 

movement of the dummy due to water exchange. The weight and the dimensions of the 

test-specimen was controlled, just before and after the test. To study the influence of mois-

ture content, mainly tests were done above 0 
0 

C  
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fig. 8.2 Scheme of the searching procedure for zero relaxation  

 

 
8.3 Loading sequences of the relaxation test  

 

 
Relaxation  
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fig. 8.4 Regression of relaxation and creep on one specimen  

 

 
 

 
fig. 8.5 Creep test in shear  

 

The measurements were taken with a data logger and stored on files. An example of load-

ing sequences of a relaxation test is given in fig. 8.3.  

An example of the regression for relaxation and for creep in tension along the grain, done 

on the same specimen, is given in fig. 8.4  

An example of creep in shear is given in fig. 8.5, together with a plot on logarithmic time 

scale. Probably there is a start of a second process at the end.  

 

 

 



Section B, Creep, damage processes and transformations 
 

90 

 

8.3 Results of the parameter estimation  
 
In general, the stress-strain loading line was only faintly curved and nearly straight, indi-

cating a constant value of C for loading and a gradual increase of stiffness. The first un-

loading to the level of zero creep, showed a perfectly straight line, thus no recovery of 

stiffness and viscoelastic strain. The second unloading line was curved, showing recovery. 

Because of the small viscoelastic effects and the scatter, curve fitting of the loading and 

unloading tests is inaccurate. When these lines are approximated by linear lines, the gen-

eral tendency is that the mean stiffness of the first unloading line is the highest, and the 

mean stiffness of the loading line is mostly the lowest. In fig. 8.6 and 8.7, the loading and 

unloading lines are given of a compression test, which show the most pronounced stiffness 

differences.  

 
 

fig. 8.6 First loading of a compression test  

 

The estimation of the compound parameters of the relaxation tests and creep tests, accord-

ing to eq.(8.4), are given in technical reports [1] to [5] of the Stevin-laboratory.  

For some tests the level of zero creep or relaxation was maintained for long times in order 

to verify the three element model by control the constancy of the parallel "spring constant". 

In one test in tension (series 3), for instance, this level remained perfectly constant during 

the available test time of 20 hours, despite the changing relative humidity (+and - 15% 

around equilibrium level). This delivers the empirical proof of possible zero relaxation.  
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fig. 8.7 First and second unloading sequences of a compression test  

 

 

8.3.1 Model-parameters, discussed for shear  
 

An overview of the parameters C and T of eq.(8.4) for shear is given in table 8.2 of 

B(1989a). The parameter T of the creep equation, which is a measure of the delay time, is 

the result of a multiplication of a very large value by a very small value and determination 

of these parameters, containing the relaxation time, will be inaccurate. A better determina-

tion of the relaxation time, by increasing the creep time, appeared to be not possible in this  

 

 
 

way because of the start of a second mechanism after longer times. The value of T is high-

ly dependent on the initial flow unit density or initial plastic strain and the variation shows 

that this is a random property for wood. A long delay time indicates a low initial flow unit 

density and the process reflects a structural change with an increase of flow unit density. 

The automatic control of the air humidity could show rather great oscillation around the 
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mean value, depending on the temperature and the humidity. To maintain a sufficient low 

humidity cycle, hand steering appeared to be necessary.  

The value T/C is:  

  2
2 v0

T 2 K 1
K exp

C KA K c
    

 
   (8.5)  

where   is given below eq.(5.2.7) of B(1989a) and c is a constant for loading to the creep 

level at constant strain rate ( 5 13 10 sec  ). It appears that the mean value of T/C is about 

1.0∙ 310  for series 52231/3 and 51231/3 and about 2.2∙ 310  for series 52251/3 and 

51251/3, in accordance with the two times slower rate that was chosen for these series. 

Thus   is not dependent on the moisture content and temperature and the main influence 

on the variability of T is due to the variability of C. The parameter C is the slope of the 

strain-log(time) plot. Every specimen has another value of C as can be seen in the series, 

where the stress and the climatic conditions are the same in the tests but the values are out-

er each confidence intervals. This indicates different structures and loading histories of the 

fibres during lifetime in the tree and in the drying process.  

The value of C ranges from 0.013 to 0.04 for resp. high and low stresses for not too high 

oscillations of air humidity. For higher R.H.-oscillations and high temperatures there ap-

peared to occur a transition of   giving a much higher value of C. This was controlled in 

series 51251/3 where the specimens were conditioned at 50% R.H. and tested at 28% R.H. 

causing a decrease in moisture content during the test. Thus moisture movement is the ma-

jor influence on the value of   and the model has to be adapted for this phenomenon.  

For the series with small cycling humidity conditions the product of the force with C ap-

peared to be constant. This shows that C is stress dependent or that   is constant, inde-

pendent on temperature and moisture content.  

 

8.3.2 Constancy of model-parameter    

 

It appears that at cycling moisture content conditions, 0C 1/    is no longer constant, but 

that   is constant as follows from the following tables of the shear tests and of the tests of 

compression and tension along the grain. 

   is constant, when 0C  

Table 8.2. Shear tests along the grain, mean values.  is 

constant. Or, in the 

table, when P∙C is con-

stant. It is seen in Ta-

ble 8.2, that below the 

transition temperature 

of 74 
0
C, there is a 

very small, (negligible) 

influence of tempera-

ture and m.c. on  .  

 

This small influence has to be regarded as the delay time of the structural change process 

which will dominate at a later stage of at higher stress loading, 

An overview of the parameters C and T of eq.(8.4) for compression along the grain is giv-

en in table 8.5 of B(1989a).  

An overview of the parameters C and T of eq.(8.4) for tension along the grain is given in 

table 8.6 of B(1989a).  

 

Test nr. 

 

Force 

kN 

P 

 

R.H. 

 

 

Temp. 

deg. C 

 

 

mean 

factor: 

   C 

Constant        = 

Force times C = 

   P∙C 

52231/3 

52251/3 

51231/3 

51251/3 

1.6 

0.8 

2.0 

1.0 

0.75 

0.87 

0.55 

0.28 

30 

50 

27 

74 

0.021 

0.039 

0.0166 

-- 

1.6∙0.021=0.0336 

0.8∙0.039=0.0312 

2∙0.0166=0.0332 

transition values 
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Because of the similarity of the constants so far and the independency of the parameters of 

the moisture content, only tests at one moisture content were done for tension in grain di-

rection and to verify the independency on temperature at low temperatures, measurements 

were taken at lower values of the temperature. The tests were done in relaxation, and for 

comparison some tests in creep were done on the same specimens as well (specimen 31130 

is the same as specimen 31230, and specimen 31133 is the same as 31233). For specimen 

0, first the relaxation test was done and for specimen 3, first the creep test. After each type 

of test, there was a recovery period. The strain of the creep test of specimen 3, was waved 

by the following of the humidity and temperature cycles, and temperature correction of the 

data had a strong influence. The influence of this correction on the relaxation tests was 

negligible.  

The ratio of the parameters C for creep and for relaxation of these tests:  

 0 0 2 1 2 2/ K K K K 0.016 / 0.013       to  0.020/0.016 = 1.23 to 1.25,  

suggests a ratio of the spring stiffness in the model of 1 2K / K 0.24 , or:  

 1 1 2K / K K 0.2  , as found and applied before.    

 

Table 8.5. Compression tests in grain direction, mean values. 

The same applies for 

Table 8.5, showing 

constant   below 

about the same transi-

tion temperature, thus 

showing hardly an in-

fluence of temperature 

and moisture content 

on  .  

 

Table 8.6. Tension tests in grain direction.  This does not apply  

for tension in grain 

direction. The quick, 

small, humidity chang-

es could not be fol-

lowed by the tensile 

specimens due to the 

long grain lengths of 

the specimen. For 

these tests C is con 

 stant and is about:  

C ≈ 0.15, or n = 1/C = 1/0.15 = 67 as also found by other investigations at constant climate 

conditions. 

The tests, for compression and tension perpendicular to grain, were tests on small clear 

specimens, with a very short grain length, in the direction of a small dimension of the spec-

imen, showing therefore a transition to a flexible state at m.c. cycling at high R.H. or at 

high temperature conditions. Only the series at standard climate conditions did show a 

common C value of about C ≈ 0.15 (n ≈ 67). All other specimens did show the transition to 

the flexible state.  

An overview of the parameters C and T of eq.(8.4) for tension in tangential direction is 

given in table 8.3 of B(1989a). The parameters are comparable with those of the shear tests 

when relative humidity fluctuations are kept small (see 41231/3). Deviations occur near the 

 

Test nr. 

 

Force 

kN 

P 

 

R.H. 

 

 

Temp. 

deg. C 

 

 

mean 

factor: 

   C 

Constant        = 

Force times C = 

   P∙C 

11251/3 

12231-- 

12231/3 

 

1.28 

1.93 

1.00 

 

0.34 

0.77 

0.55 

 

70 

29 

48 

 

0.036 

0.027 

0.050 

-- 

1.28∙0.036=0.046 

1.93∙0.027=0.052 

1.00∙0.050=0.050 

 

 

Test nr. 

 

Force 

kN 

P 

 

R.H. 

 

 

Temp. 

deg. C 

 

 

mean 

factor: 

   C 

Constant        = 

Force times C = 

   P∙C 

52231/3 

52251/3 

51231/3 

51251/3 

1.6 

0.8 

2.0 

1.0 

0.75 

0.87 

0.55 

0.28 

30 

50 

27 

74 

0.021 

0.039 

0.0166 

-- 

1.6∙0.021=0.0336 

0.8∙0.039=0.0312 

2∙0.0166=0.0332 

transition values 
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process transition temperatures i.e. about 50 
0 

C for wet wood, and about 70 
0
 C for dryer 

wood. The mean values of T/C of the series show no tendency and can probably regarded 

to be constant independent on temperature and moisture content. The great variability 

shows a major influence of the structure and previous history.  

An overview of the parameters C and T of eq.(8.4) for compression perpendicular to the 

grain in radial direction is given in table 8.4 of B(1989a). Except near the transition tem-

perature (22241/3), the mean value of T/C can likewise be regarded as a constant with re-

spect to temperature, humidity and stress.  

 

 

8.4 Conclusions  
 

- Because data are available for perfectly constant moisture conditions and because chang-

es in moisture content may have a great influence on the parameters of the overall process, 

the tests were done by cycling relative air humidity conditions, as will be encountered in 

practice, to see this influence on the different processes.  

- The creep behavior is well described by the kinetic theory, showing one dominating pro-

cess in the first hours. For this process i iB   and i iC   in eq.(5.1.1) were zero. Thus it fol-

lows that for relaxation processes eq.(8.2) applies and although 1A  and 1  in this equation 

act mathematically as constants, they can be expected to be random because of the random 

values of the initial plastic or viscoelastic strains i , depending on the loading and temper-

ature history during the lifetime and the drying process. Further it is possible that eq.(8.2) 

represents the mean behavior of all processes with comparable retardation times. In order 

to distinguish for instance, between the processes of diffusion and creep, it is necessary to 

have some orders difference in relaxation times of these processes. This is possible by us-

ing thin specimens. However, as shown before, the mechano-sorptive effect is quite differ-

ent then.  

- It appears that (per process) the three-element model holds and that the parallel spring is 

constant. The retardation time for creep of the Maxwell-element is very long with respect 

to the testing time of three hours, and the behavior can be described by the logarithmic 

law:    0/ 1 Cln 1 t / T 1 Cln t / T          (8.6)  

representing the theoretical equation for the early part of the total creep with the approxi-

mation for longer times after the start of the creep. The breakdown of this logarithmic law 

[6] is predicted by the theory. This law only applies in the first creep stage (and t >> T). 

The same equation holds for relaxation:  

   0/ 1 C'ln 1 t / T 1 C'ln t / T          (8.7)  

Because C ≈ C', and T ≈ T' and C.ln(t/T) << 1, the product of eq.(8.6) and eq.(8.7) is:  

0 0/ 1       (8.8)  

This is not a prove of linearity of the viscoelastic behavior, as generally assumed, and as is 

applied p.e. in [6], but is an indication that the spring constant: 1 2K K  in the three ele-

ment model.  

- The values of the parameters are comparable, independent of the type of loading and 

loading direction, showing that the same process is acting.   

- The ratio of the parameters C for creep and for relaxation suggest a ratio of spring stiff-

ness in the model of approximately 0.24. This means that the lowest spring constant is 1/5 

of the total stiffness according to the model of fig. 2.3 of not fully bonded cellulose chains.  

- Oscillating relative air humidity at a relative high frequency appeared to have influence 

on the parameter C for the short grains of the specimens for shear and compression and for 
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tension and compression perpendicular to the grain. The accessibility of moisture deter-

mines whether the mechano-sorptive process dominates and whether softening may occur.  

- The parameter T of the creep equation, which is a measure of the delay time, is the result 

of a multiplication of a very large value by a very small value and determination of these 

values, containing the retardation time, will be very inaccurate. A better determination, (in 

this way), of the retardation time, by increasing the creep time, appeared to be not possible 

because of the start of a second mechanism after longer times. The value of T can be high-

ly dependent on the initial dislocation density or initial plastic strain and the variation 

shows that this is a random property for wood. A long delay time indicates a low initial 

flow unit density and indicates a structural change with an increase of flow unit density.  

- It appears that the mean value of T/C is about constant, but has a higher value near the 

transition temperatures. Thus   is not dependent on the moisture content of wood and can 

be dependent on temperature in the neighborhood of the transition regions and the main 

influence on the variability of T is due to the variability of C.  

- The parameter C is the slope of the relative strain-log(time) plot. Every specimen has an-

other value of C. This indicates differences in structure and loading history of the fibres 

during lifetime in the tree and at drying.  

- At cycling humidity conditions, the value of C is not constant, as under fixed climate 

conditions,  but the product of the force (stress) with C is constant. This shows that C is 

stress dependent or that   is constant, independent of temperature, stress and moisture 

content. This constancy of   is a property of the mechno-sorptive mechanism.  

- If the mean moisture content cycling is low, as in the specimen of the tension along the 

grain test, a constant value of C dominates. This will be the case for structural dimensions.   

- For higher R.H.-oscillations and high temperatures there appeared to occur a transition of 

  giving a much higher value of 1/  and of C (at constant T/C, containing not the value 

 ). Thus moisture movement is the major influence on   and any model has to account 

for this phenomenon. The mean values of this high C (C = 0.16) suggest not much influ-

ence of moisture content and temperature. Near the transition temperatures, i.e. about 50  
0 

C for wet wood, and about 70 
0
C for dryer wood, is C twice this value. The mean values 

of T/C of the series show no tendency and can probably regarded to be constant independ-

ent on temperature and moisture content. The great variability shows a major influence of 

the differences of the structure and the previous history.  
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9 Conclusions  
 

- An extension has been given to the theory of molecular deformation kinetics by the de-

velopment of a general limit analysis (thus exact) theory, which is solely based on the reac-

tion equations of the bond-breaking processes, and dimensions of the flow units accounting 

for the derived necessary thermodynamic relations of energy exchange.   

By expressing the concentration of flow units of the reaction equation in the dimensions of 

the flow units, the expressions for the strain rate, fracture, hardening and delay time are 

directly derived. The reaction (in solids) is derived in section B.2 to be of first order.  

- A (Fourier- type) series expansion of the potential energy curve, leads to parallel acting 

systems of symmetrical consecutive barriers. Each consecutive row acts as a single sym-

metrical barrier, what provides the derivation of the thus far empirical generalized flow 

theory, showing, the premises on which this theory thus far was based, are consequences of 

the series expansion. This delivers a parallel system of simple symmetrical processes, far 

apart from each other. This general theory is generally applicable for the description of 

time dependent behavior of materials including transformations and fracture processes.  

- Therefore, as also, additionally, shown by Section B.2, the developed new equilibrium 

theory of deformation kinetics explains all aspects as creep, damage, aging, annealing, nu-

cleation, transformations as glass transition, rubber behavior, diffusion, etc. by the same 

constitutive equation. By the solutions of the theory equations for transient processes, at 

different loading histories it is shown that the theory is able to explain the phenomenologi-

cal laws of creep and fracture. It explains for instance the yield drop and the logarithmic 

strain rate law of the modulus of elasticity in the constant strain rate test; the logarithmic 

time law of the strength in the constant loading rate test; the logarithmic time law of the 

creep and the bend off of the creep line at long times (delay time of the structural change 

process) and the shift of this line along the time axis depending on the stress level and de-

pending on the temperature (time – stress and time - temperature equivalence).  

- For wood at creep, 2 processes can be noticed. The first process with the smallest slope in 

fig. 5.9 contains a high density of flow units 

(zero order reaction) and produces the flow 

units of the second process, which shows a 

long delay time (thus starts with a negligible 

slope) and a steep slope at later times. When 

the creep loading is high, this second steep  

fig. 5.9 Creep eq.(5.4.4) and eq.(5.4.11)       curve may act directly at the start. This is due   

 to the time stress equivalence, shifting curve 

of higher loadings to shorter times, as given 

by fig. 5.10 for cellulose, making prediction 

possible of long term behavior at the lowest 

applied stress level. Thus, depending on the 

load level, it is possible that in a test the dam-

age increase of two processes are measured or 

only the delay time of one process.  

fig. 5.10 Creep compliance behavior  The power law description, then delivers  

 meaningless powers, which are not able to 

predict other, general, behavior. For instance the power n = 64 represents mainly the wait-

ing time of the fracture steps in a controlled crack propagation test. Thus finding at testing, 

the power 64 by the power law equation, this only means that stable crack propagation  

occurred, which response has to be described by the theory of deformation kinetics. 

- Of the two processes, measured in § 4.7-[15], the quick one had a very high internal  
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peak stress, as occurs at a crack tip, indicating stable crack propagation (and showing for-

ward activation only). The activation energy was approximately 50 kcal/mole, high enough 

for primary bond rupture. The slower process was approximately symmetrical and had an 

activation energy of about 21 kcal/mole. The activation energy of this process is compara-

ble with values found in § 4.7-[17], where from creep tests at different temperatures for 

bending: H'= 22 kcal/mole to 24.4 kcal/mole, depending on the temperature range, have 

been found. From normal-to-grain relaxation tests 23 kcal/mole was reported for wet 

beech-wood in § 4.7-[18]. This energy can be regarded to be the energy of cooperative hy-

drogen bond breaking (as calculated below fig. 2.3). The activation energy of 50 kcal/mole 

is high enough for cooperative C-O--bond or C-C-bond rupture.  

- Because at determination of the short term strength, both processes act combined, without 

delay time, the estimated value of the enthalpy and H' of about 36 kcal/mole in § 4.5, 

eq.(4.5.10) is the result of a mixture of primary and secondary bond breaking at the same 

apparent activation volume. Both processes are then regarded to be one coupled process.  

- The theory made it possible to derive the different power models (Andrade, Clouser, For-

intek, of the power of the stress or of the time), giving the physical meaning of the expo-

nents and constants. It is e.g. shown that the Gerhard’s model is an expression of forward 

activation only and this will be right for high loading in the end state. The Andrade-type 

equation is shown to be equivalent to the theoretical logarithmic creep behavior. The in-

verse of one of the parameters of the Andrade or Clouser equations is equal to the work 

parameter of the activation energy (n =V/RT) and has same meaning as the exponent n 

of the experimental power law equation for the creep rate and the exponent of the Forintek 

damage model. Further is 1/n the slope of the normalized logarithmic creep and relaxation 

lines and of the logarithmic time to failure law of the creep strength or long duration 

strength. The power value of n is p.e. in the Clouser equation n ≈ 33. In the Forintek model 

is n = 34. As slope of the logarithmic creep-to-failure law n = 38 is found, if the line is 

scaled to the ~ 1 sec. short term strength, but this n = 34 when scaled to the 5 min. 

strength. The value of n following from the universal form of the WLF-equation as applied 

for the glass transition of lignin is: n = 2.3 x 17.44 = 40, equivalent to a scaling to a very 

short duration (instant loading) strength. Thus it appears that n (the activation volume pa-

rameter) is essentially a structure constant and is as such unaffected by (constant) moisture 

content and temperature. 

- The values of n between 33 and 38, depending on scaling of the short term strength, ap-

ply for secondary hydrogen bond breaking processes.  

- As will be discussed in Section B.3, a kinetics explanation of the WLF-equation (Wil-

liams-Landel_Ferry is WLF) for glass transition and temperature dependence of creep 

above glass- rubber transition is derived, showing that the change of the concentration of 

mobile segments and not necessarily the change of the free volume concentration is the 

cause of the transition. The theory is extended for cross-linked polymers at transient creep 

for the element that performs the transition. It follows from the theory that for the special 

case of constant concentration of flow units the temperature dependence is according to the 

Arrhenius equation. For higher values of the activation enthalpy, if not the entropy alone is 

dominating, the theory predicts a shift factor between the Arrhenius- and WLF-equation. 

The WLF- equation is further extended for the influence of the time scale of the process.  

- The nonlinear viscoelastic deformation problem is often linearized by splitting up the 

contribution to the rigidity in numerous linear viscoelastic processes giving a relaxation 

spectrum. However, the zero relaxation test shows that a real spectrum does not exist.   

- It further is shown that a single process may explain the measured, broad, nearly flat 

spectra of glasses and crystalline polymers and the total relaxation spectrum for wood can 

be explained by two processes in stead of the assumed infinite number of linear processes. 
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This also applies for the spectrum of energy loss at forced vibrations and the activation 

volume therefore shows a special relationship. Also fatigue behavior can be explained by 

one dominating mechanism in a wide frequency range, and the behavior at long term load-

ing and at fatigue loading is coupled by the same mechanism. Thus it will be possible to 

use fatigue tests in order to predict long term strength.  

- For clear wood in compression there in no indication of hardening and yield drop, show-

ing the influence of a amorphous polymer (lignin). Thus the thermodynamic possible terms 

i iB   and i iC   in eq.(5.1.1) or B’ an C in eq.(5.2.8) can be neglected in this case..  

- For timber (with knots) in compression along the grain however there is a small yield 

drop, superposed on the behavior of the clear wood between the knots, indicating the act-

ing of another Maxwell element (crack propagation by shear failure at the knots). Thus 

knots act as flow units with a low density. Hardening in compression by combined stresses 

is only possible as system hardening by confined dilatation as shown in D(2008a).  

- For wood in tension there is a high yield drop, showing the influence of a crystalline ma-

terial (cellulose) dominated by a low initial flow units density 0 . There is also no indica-

tion of hardening,  

- For wood therefore, is follows that i iC   of the derived creep eq.(5.1.1), can be neglected. 

Thus hardening is not due to this term but is due to the influence of the parallel processes. 

When the parallel processes are still regarded as one coupled process, then i  has the form 

of i M    , where M is proportional to the spring constants of that parallel element 

and i iM C   .  

- For wood the logarithmic law of the relative creep-to-failure strength, eq.(4.5.4), is one 

line for different wood species (=different densities), moisture contents, stress states (bend-

ing, shear, compression etc.) and types of loading, showing sn / NkT    is constant and 

thus that the concentration of sites N is proportional to the dry short term strength s .  

Therefore also the activation enthalpy and entropy are independent of the constant mois-

ture content. The activation volume is however strongly dependent of the moisture content 

(and thus the inverse of the strength has the same dependency). Based on this form of the 

activation energy, the experimental creep- to-failure tests at different temperatures and 

moisture contents could be explained as well as the straight line of the strength on log-time 

scale for dry wood as the curved line for saturated wood (fig. 4.5.1). Saturated wood shows 

an enthalpy of about 36 kcal/mole above a transition temperature of - 8 
0 

C (see fig. 4.5.2) 

and about 30 kcal/mole below this transition temperature. Dry wood doesn't show this 

transition. For creep processes N is proportional to the highest ever applied stress.  

- The measured negative contraction of creep in bending tension is the indication of a 

stress redistribution mechanism, causing mainly shear with compression in the wood ma-

trix and increasing the tensile stress in the fibres.   

- The activation-parameters are different for every piece of wood, indicating an unique 

structure of every test-specimen. The average values are comparable for tension, compres-

sion and shear, along the grain and perpendicular to the grain.  

- The 3-element model is shown to explain the necessary possibility of zero creep and zero 

relaxation. Thus after a period of creep, at constant loading, there exist a load level after 

unloading to that level, where there is no further creep deformation., because the internal 

stress on the creep sites is zero..   

- This zero creep test shows that the ratio of the spring constants of the 3-element model is 

about 1:4. The weakest spring contains the non-linear dashpot.   

- This first creep process can be destroyed by mechanical conditioning. The response of the 

then next process can not be measured in common testing times (due to the too long re-
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laxation time) 

- For dense species with a high lignin content, a flow unit multiplication mechanism domi-

nates with a stress independent relaxation time. It can be deduced that for this mechanism 

2 v0K   or 2

2 0K   is constant. Thus the density of the flow units is then proportional to 

the plastic strain. The constancy of 
v  applies only for constant temperature and moisture 

content. Probably 1/
2 vK   is linear dependent on   and T. This process causes rotation 

of the relaxation lines at short times in proportion of the strain. When this process is fin-

ished (t = tm), it can be seen from eq.(5.5.10), that the relaxation lines for longer times (t > 

tm), are shifted vertically according to: 
1 2 01 02/ /     . Thus, besides horizontal shifts, 

also vertical shifts can be necessary at some stress levels for the construction of a master 

creep curve for long loading times.  

- The in literature reported existence of a mechanism with constant   applies for the 

mechano-sorptive mechanism at changing moisture content and a creep model has to con-

tain all these processes as parallel acting mechanisms.  

- The constancy of   can be explained as follows: For compression the number of devel-

oping slip planes N is about linear proportional to the stress level   at lower stress levels. 

Thus  /N = c, and / NkT 'T / NkT '/ Nk      c '/ k  is constant. At a level 

of about 50 to 65% creases are formed, leading to the second mechanism of gross buckling 

of the cell walls where a constant buckling stress f may be expected. Thus 2 3/ N f      

is constant, or / N  is constant. Analogous is for crack propagation in tension the real 

stress f at a sharp crack at any stress level equal to the “flow” stress and is 2 3f    constant 

or is / N  constant.  

- To know the shift of the compliance along the time axis due to temperature, the same 

stress level has to be used in all tests at different temperatures. Then the shift:  

a b a bln(t ) ln(t ) E'/ kT E'/ kT     

where E' is the activation energy. This is only true if 21/ K  is constant, independent of 

the temperature (e.g. for creep). If this is not perfectly constant, reduced strains are neces-

sary to obtain the right activation energy.  

- As mentioned, wood shows a dominating process with a high initial site concentration, 

which doesn't change much with respect to the initial value, (thus determines a zero order 

reaction), what leads to the condition: f 0N 0.5N  for fracture, as experimentally found  

( i.e. the small crack length is about the crack distance, or the intact area has reduced to 0.5 

times the initial area when instable crack propagation starts). This leads to the small crack 

merging model of fracture mechanics of B(1989a), which explains the measured mode I 

and mode II final softening behavior and gives the fracture mechanics explanation of the 

“ultimate stress condition” of limit analysis.   

- Detailed conclusions regarding the experimental investigation are given in § 8.4. 

- These creep test showed one dominating process in the first hours, following eq.(5.1.1) 

with:  i iB C 0  , leading to eq.(5.4.1):  v vKAsinh 0     for creep. 

- As first explorative investigation, the independency of the parameters of moisture con-

tent, stress type and temperature was indicated when not too close to a transition to a sec-

ond process. 

- By the application of small clear specimens, all processes did show a dominatingprocess 

with a constant value of  , due to moisture content cycling, in stead of a constant 0  , as 

applies for constant climate conditions. Necessary for the mechano-sorptive mechanism is 

a change of the mean moisture content in a specimen. Humidity cycling around this mean 
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m.c. therefore are not noticed in common structural elements. Only the yearly m.c. changes   

 

- The bearing parts of toothed plate and ring dowel connections are highly accessible to 

moisture, what also strongly depends on structure deviations as initial cracks, causing a 

high variability of the mean moisture content of those parts and by that of the deformation 

by the mechano-sorptive effect. Protection by glue or paint is necessary for reliability.   

- Outer the common process which acts at constant climate conditions, thus by the mean 

temperature and mean moisture content, a mechano-sorptive process is acting, due to the 

cycling moisture content. The first process shows a constant slope of the logarithmic plot 

of the relative creep (constant 1/n), while the mechano-sorptive process shows a constant 

slope of the logarithmic plot of the creep (constant 1/ ). This explains the for joints meas-

ured, increasing reduction of the creep factor by the increase of the load level. 

- The general conclusion always made, that by a high data variability any curve will fit and 

thus a linear elastic one is good enough, is not right. Such fit is not able to predict behavior 

in other circumstances and other loading histories. A high variability indicates an “exclu-

sion of fit” (with a very high probability) for all separated data curves to the mean theoreti-

cal equation. This means that the data of every specimen (every structure) should be sepa-

rately fitted to the theory equations, which fits will show a correlation close to one, be-

cause of the molecular high number statistics. Every specimen thus is significantly (at the 

highest confidence level) an unique giant molecule.  

 

Notations  
 

A = reaction rate constant times the constant "concentration" of flow units v0 . A = v0 ∙C 

=  v0 exp E / kT   ≈ (for cellulose: v0  ≈ 1) ≈ exp(- E/kT).  

a = 23D/d
2
; D is the diffusion coefficient; d is diameter of the specimen  

vB   the same as A, however with changing v .  

Cp = the heat capacity at constant pressure  

C  = reaction rate constant  

( kT/h)exp(-E/kT) = (  kTm/h)exp((-E/kT) - ln(Tm/T) =  

= exp((-E/kT) - ln(1 + (Tm -T)/T)) ≈ exp(-E/kT – kTm/kT + 1) =  

= exp((-E – kTm)/kT) ≈ exp(-E/kT) because: kTm- kT << E.  

E = the activation energy  

f  = local real stress on the flow unit in the direction of the movement  

G = Gibb's free energy  

H = enthalpy (H is also used as height of the relaxation spectre)  

h = Planck's constant = 4.135*10
-15

 eVsec  

k = Boltzmann's Constant = 8.616*10
-5

 eVK  

K = local rigidity  

N = the number of flow units per unit area.  

n = exponent of the power law, or work term of the activation energy:  

n =  2 3 vf / kT / NkT       = v     

P = pressure  

Q = heat of the system  

R = gas constant = Nmk = 1.987 cal K
-1

 mol
-1

, where Nm = 6.02.10
23

 is Avogadro's number.  

S = entropy  

T = the absolute temperature  

 t = time; tr = (apparent) relaxation time  
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U = internal energy  

V = volume  

W = work done by the system  

   see   ( a and  b are also locally used as constants)  

/ A     or / B ;     v 1/ A 1 exp K        or  ≈  v/ (B )  .  

  = strain; 
v  = viscoelastic, or viscous strain; 

v0  is the initial value.  

 =  /(NkT) (see n)  

  = deformation  

  = viscosity = 
v /     

  = transmission coefficient or the ratio of activated complexes going into the product 

state and don't return to the reactant state.  ≈ 1  

  = jump of the flow segment at activation; 
2 3    area of the flow unit;   2 3    

activation volume; 1  = length of the flow segment or distance of points of flow  

  = frequency or also:   = kTm/h is the Debye frequency (about 10
-12

)  

  = concentration of flow units = 2 3 1N /        

  = mean stress; v  = part of the mean stress on the flow units: v 2 3N f      

  = moisture content  

  = the chemical potential  

 


