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1. Introduction and justification

Strength deformation and other important propertiesvobd matrials ardime dependent
and dependent on physical properties as temperature and moisture contemtyvbeah
be explaind and describelly theactingphysical and chemicg@rocesses, thus by staiist
cal mechanics and reaction kims [1], and as shomy the in [2](Section B.1developed
limit analysisequilibrium theory of defanation kineticds fundamental andxplains all
aspects as creep, damage, aging, anng@jngucledion B(2011),transformationss
glass transition, rubbéxehavior diffusion, etc. by the same constitte equation. The
consequence is that the cadlictory phenomenological modebs the free volume model
for glasstransition, the instability model of nucleatidhe tunneling modaedf activation
and the extrapolated fldde chain modelwith nonexistent linear viscelasticrelaxation
spectra for rubber beti@r and creep of materials, etbgve no meaningndare rejected
by thisexact @proach

It is shown that wood does not followaltransformation up to the vehjgh temperatures

where decomposition starts and is in the gidste, even at these high temgiares.

It is evident for wood, as a glassy and crystalline polymer, that time depémthenior

can not be explained and described by flexible chain modelitute solutions (rubber

theory) or by other Newtonian vis@astic modelgas isstill generallypracticg. Linear
visco-elasticity does not exist and also for real rubltbyesii r ub ber t heoryo
because this phenomédagical model is qu&tionableas shownn [4] andin Appendix |

Regarding the modelproposedor wood the following can be stated

1 The in literature(C. Huet [16], COST 508and ECMAL1B repor), proposeghenan-
enological multitransitionsmode| based ora spectrum ofransformationscannot &-
ist because the resportsglow a tranormation cannot interact or contribute to tiee r
sporse above that transformation, and thus a speontehction cannot exist. Bldlso
the spectral paraboic, form of the loss tangertan not existIn fact, a constant value
of the loss tangen$ measured for all structural matesibke wood (see fig. 3.8.x
plained by theory?2]). The choseirCole-Cole-circle (or parabolajor the loss tangent
representsiot real, butdealized (norexistent) méerial behaior. As known from K-
erature, this plot oy can partly and roughly repgent phenomenological, thesponse
in the zone of glasaubber transition to disappearing stiffness of rubbers and solutions
and thus maroughly representie low frequency end of the glasanstion zone of a
lightly crosslinked rubber or gel, showirige bessucha broad cured loss comp
ane. Thus, the Gle-Cole plot is not able to peesent the glasstate and thkeather
state(which may beapproximaed for wet saturategwoodat very high loading and
temperaturg The na existent multi ColeCole-parabolic logathmic decrenents are
introducedo indicate the symsedseparate glassarsitions of e.g. cellulose, hemiee
luloses and lignifmn wood as stated in [16] and related publications. ldeer, wood
behaves like a copotyer and can only show one glass transi{geee.g. fig. 5.1)and
notthe trandions of the separated wood compatsand the multiglasstransitions
model or multiCole-Coleplot thus has no theoreticahd physical background argd
not able to predict behavior and treieuld be fogotten.

1 Thesame applies forthe T a mmid @ $1 s e [16], bemgidentical to the empicial
nucleation and steygrowth equation of the liquiddid phase transformatioand thus
can not be proposdd be the generalization to all kinds of transformati@ssis done.
Othertransformationsl o rsi@otvthe propety changes like the liquidolid transfo-
mation ancho transformatiomeed infinite enegy, (according to thempiricalTam-
mannHesse lay to reach equilibrium. fiis choice of liquidike behaviorcan not be
right for structurapolymerslike wood but also the TammarHesse equatioitself,
thus thechosen empirical nucleah model, appea to be theoteally not right, as is




shown here in 2.5 and 2.6. This transformation model further is based on a first order
trangormation equation (the nu@gon of the liquidsolid phase), although it isger
posed in all publiddons (mentioned e.gni[16]) to apply for glasgransitionswhat
are second der transformations (depéing on other physical parameters than the first
oder transfor mati ons }He sThealsbeahwiot repladelthe s A T a mr
WLF-equation of glass transition, ag®posed, also because the Wedfuation is ot
a replaceable empirical eqtian any more, but is a thegiical expresion, based on the
exact explanation of certafftow behaviomear glasdransitionas is derivedy the
equilibrium theory of reactio kindics, see [2] and [3)r Section B.Jand Section B.3.

1 Similar remarks apply for the.g.in [16] proposedphenomenolgical Zimm model
and other models of dilute solutiorfRilem), that have notimg to do with transfie
mationsand nothing to do with thphysicabehaviorof wood that is not a sdiion.

1 Thisalsoapplies forthe, also for wood (E.C.MA1B, Rilem, report$, introduced sal-
tions model of paper sciencghat is identical tothewek n own t hegularet i ¢ al A
solu i o n s Qwhare tdeaahsitionbetween two different phases is based on the
change of the lattice coordination number, what is the change of the way of packing of
the atoms, and thus on the change of the enthalpy and thus is based on a first order
trangormation. Thiswrondy isused to estimate the glass transition temperatexe b
cause a glass transitionasecond order transition (shiogy noenthalpyjump).

1 Because the models aboae not able to fit data, the power l&tMs alwaysusedin-
stead The power law is shownereto give the first two terms of an expansion around
some measured value by any formula (see 2.5.3). The power law thus nesgmep
any model, when it is applied in a limited range of the variable around the measur
ment, or in this case, in a relativedgall time range around a mean time value. Thus,
the power law cannot be applied for extrapolatiobeifaviorto longer times as
wrongly is done for creep, etc. Because of the lack of a theoretical meaning-and b
cause of the impossibility to predis¢havor, even not of a single teptocedure, the
power law fittingprocedure, isheoreticauseless The Apower | awo i s tl}
formula of time dependetvehavior used b&re 1800, and is as olk the first puli
cation of this subje@and appearto benotrejectablealthough tls law predicts the
physical imposible infinite rate at the start, while there always is a delay tirtheav
negligible rate at the start of transport phenomena, and predicts a (physicallyitmposs
ble) unlimited increase wh time, thus is, in principle, not able to tittal to any test
result(see Appendix for real,possible precise data fitéwith correlation~ 1) by de-
formation kinetics theory)

In the following chapter, the untenablegmonenological models of traf@mations will

be discussed and replaced by the exact theory of reaction kinetics, to make a reat explan
tion and prediction afime dependerttehaviorpossible. This leads to a new theory of s
lidification, nucleation,glass trasition, annealing, diffusion, Rouse and Zimm and other
spectra, power law, reaction order, edmdleads tahedemanded calculable relidiby.

2. General aspects of transformations
2.1. Introduction

As discussed above, the description of the m@ichbbehaviorof glasses like woqdtill

is based in literature, on extrapolations of not valid transformation models of sofgand li
uid-like materials. It thus is neay to discuss general possib&haviorof materials in
relaton to wood using thexact thery. This exact theoris shown taexplainall phenan-

ena and fits the data of tests, done on the samevsgecthus on the same structure, with a



correlation close to ong@sis necessary for a molecular theary)

For the discussion of the apaligransformation models, generatliscussion is necessary

of phase transforntians what are changes of the characteristics and physicariesd
materials on alteteon of the external constraints such as pressure and teomeedate to
changes of th microstructure. Such a transfation involves a considerable atomicrrea
rangement so that the required structural and compositional changes can occure-Homog
neous transformations show compositional changes and no structural change$ikévood
polymers,on the contrarygcannot show compositional changes at a transformation, but
only structural changes in the sidend structure (as will be discussed in 2.2). Thus}-mo
els based on typical hageneoudransformation®ehaviorcannot be applied to wood.

2.2. Heterogeneous transformations

Heterogeneous transformations occur at interfaces and are initiated at microscopically
small volumes of the product phase. This is knownua$eation Nucleation may occur at
guenchedn crystal defects or at foreign piates. Theproaess of growthfollowing after
nucleation, involves growth of the nuclei by therraetivated longrange or shoftange
diffusion and transfer processes at the interface, or may involve a martensitiatransfo
mation, showing no comgdionalchange, but a small change of the configuration, caused
by a high internal driving force. Typical teeogeneous transformations are:
1 liquid-solid transformations like crystallization and melting;
1 solid-solid transformations that may follow the comnim@iavior of thermal actia-

tion, or may occur by activation duedovery high internal stress as martensiticdran

formation.
The martensitic transforation will not be discussdaecause it does not occur in wood and
wood-products. There evesn no indicatiorof such a trarfermation at the lowest temyaer
tures (where the side bonds are stroamg and
tion may exist in wood, the elementary crystalline fibrils in wood of 3 nm are too small to
make martensitic nucleatigrossible because this is below the critical dimension to make
it possible to build up high enough internal stresses for this traraform
The common thermal activated transformations, at lower sgr@gsadisthguished into
processes showing a shoaihge transport, like the pahorphic transformation, the rea
sive transformation, ordetisorderreaction, and recrystallization, and into processes
showing a long or medium range transport like the eutectoid reaction, cellutibrea
precipitation anatoarsening.
The transformations with a shaeange transport of atoms do not show major compasitio
al changes. The polymorphic transformations, (from one equilibrium structure tdthe ot
er), in metals and ceramics, only show the nucleatiorgeswith of anew lattice into the
product phase. Also, the massive transformation only shows a change of the crystal stru
ture and no change obmposition. The same applies for the ordisorder reactioypshow-
ing the nucleation and growth of the ordered phase idifoedered phase, and for resry
tallization nvolving the creation of a strain freatlice at the expense of itsg. by cold
work, strained lattice (or for woodyvolving the reextension otrystallites).
Because the (infinite) long wogablymers oty may show structural changes by secondary
side bond breaking, transformations by loagge transport agitomsare not possible.
Transformations ofvood thus only may show a complal@behaviorin some aspects with
the transformations showing a shaatge transport, like the massive transformation or
recrystallization, with the exclusion again of 8tertrangetransformations needing a free
transport of atoms like.g.the aderdisorder reaction.
Because all transformations are diffusivéfugiion, as general common behar, should
be discussed first.



2.3. Derivation of the right diffusion equations for the different cases

Polymers like wood may show diffusion of whole sections of chains and not of molecules
because there is no covalent bond kirepand bond formation that provides chain krea

ing and chain extension. Diffusion in solids the best can be discussed by the simple exa
ple of diffusion of interstitial atoms in metals where no doubt is possible about tha-mech
nism. The interstitial atomjump from one interstitial position to a neighbouring onen-Co
sider a set of parallel atomic planes of interplanar distaylcaving a concentration griad

ent of diffusing particles along theaxis perpendicular to the atomic planes. The prdébabi
ity of an intestitial atom to jump in any direction per second is denoted here by p. Because
the concentration of interstitialsssnall, p can be considered independent of the eence
tration. The probability for a jump in forward direction will be denoted by fp and the nu
ber of diffusing partles per unit area, on the plane located at x, by n(x). By expansion at
time t:

nix+1)=nXx) + Qv x| +0.5Fn/x%)a?+ ¢éé

n(x- 1)=nXx)- () +0.5Fn(X?) -6 é . (2.3.1)

At instant t +dt, wheredt << 1/p, the increasdn of the number of particles on the plane at
X is, for a onedimensional flow, equal to the number of particles jumping fromI(X into

X, minus the number of particles jumping away from plane x. ,Tisisg eq.(2.3.1)

dn(x) =d(n(x +a ) n(x)) =fpdt(n(x +a8) T n(x)) ° fpdt(un/px)a; or:

pn/pt = Dun/ux (2.3.2)
This is Fickods first | aw,Theeguatiommlgindbietog a f or
describe a part of the peess that is faout of equilibrium. More general is the reaction in
forward and backward direction that also may contain thdibgum state. Thewln is

given by the number of particles jumping from-@& into x, plus the number of particles
jumping from (x +8) into x, minus the rnmber of paricles jumping away from plane x.

Thus according to eq.(2.3.1):

dn(x) = d(n(x + ) &n(x- d) - 2n(x)) = fEdt@Tx>)E?, or:

/G = fpfQPFn/x?) = D(GFn/Ox?) (2.3.3)
what is Fickds second |l aw. I n eq.tfjcRFo8. 3), f
instance, in the b.c.c. lattice of iron it is possible from 2/3 of the interstitial positions to
jump in forward or in backward direction andrtdhe positions invhichthis is possible,

one of the four possible directions is a forward or &Wwacd jump. Thus:

f = (2/3Y{1L/4) = 1/6 and in that case: De4B)P.

The jump probability p is determined by the probability of a particle to haudicient

high thermal energy to overcome the resistance from the other atoms when moving from
one interstitial position to the other, thus when moving from one minimum potential ene
gy position to the other against an intermediatagy barrier. Thushe probability p of

having the energy Gt T degree Kelvin is:

p =n@xpF G/KT),

in which n is the frequency of vibration or the nuertof attempts to cross the bar per

s e ¢ 0 n dis thenadtivaBon energy or the height of the potentalgy barrier and K

is the mean vibrational energy of the particles. Thus:

D = (| ¥6)@@xpt G/KT) = (| Y/6)@@xpcH / k Tk) + S (2.3.4)
where Sin G = H i TS is the entropy difference between the interstitialfoms and the
acivated state halfway between two interstitial positions at the top of the barrier end H
the activation enthalpy for these atomic jumps.

Eq.(2.3.3) is used to describe diffusiem.of water in wood, ([2], pg. 102). The equation

is based on a smallrity one term of the expansion) chemical potential gradient aeg-a
ligible driving force (random walk of the jumping elements). For the general casef-the di



ferences in forward and backward reactions due to any possible driving force should be
regarded. ien eq.(2.3.3) becomes:

dn(x) =d(n(x H ) +n(x- 1) 2n(x)) = Gp; i p)OPN/X + (5 + p) O*Qunix?)/2]

or: un/ut = fa@xpFH 6 / k TIK)QexpDS 6 / kexp-DE 6 / B@E) W) +

+ (expDE /KT) + exptaE /kT))O*Q2n/ux?/2]

or: unfpt = f@@xpc HO / k T  (R@INh@®B d /k @ Pnjux +

+ coshDE /kT) O’ n/ux?] (2.3.5)
For high driving forces this is:

pn/pt = f@@xpc H/ k T +@exBOE/KE)XD@n/ux + expDE /kT)O*Mn/ux?/2]

or: un/ut © fO@xpE H 6 / k TK)@xpOE/KT) ®@n/ux (2.3.6)
And for lowdriving forcese.g.in Newtonian like liquids, eq.(2.3.5) becomes:
un/pt = f@@xpe H/KT + SIK)GREDE /KT) O@n/ux + 1 2PPn/ux?] © (2.3.7)
°o f@@xpE H/KT + SIK)RADE 6 / @di) + nd/L?) ©
° n@efl /nL)@xp¢ H /KT + S/K)DE (2.3.8)

when the gradientl /L << 2DE/KT as can be thcase at transformations, shogva jump
of the activation energy ofE outside the transition temature.
WhenDE - 0, near equilibrium, eq.(2.3.7) becomes:
un/pt = f@@xpe H/KT + SK)Q 2@n/ux?),
showing the right value of D of eq.(2.3.3) of: D@&@@xp( H /KT + S/k).
It is seen thagg.(2.3.3) only appliewhen processeare possible at near zerovirg forc-
es,when there is a conpgation gradient and no transformation
The reaction, in a heterogeneous system, can be interface controlled, what means that the
process is governed by molecular diffusion at the interface. When, at the other fzand, in
heterogeneous system, the reaction at an interface is very fast, diffusion throughethe mat
rial towards thatriterface is slower and is dat@ning. Then the activation energy for the
process at the interface shows a value equiild activation energypr thedetermining
diffusion through the material.
At the interface the gradie@h/Cx of e.g.eq.(2.3.2) is due to the reduction of n to zero
within a thin layer L, adjacent to the interface gividg(x = n/L and eq.(2.3.2) gets the
form of the monemolecular forwards reaction:
/G = Ch (2.3.9)
with C = D/L. The same follows from eq.(2.3.3) with C = B)/if a curved gradient issa
sumed teexist, that can bapproximated by a parabqglas is possiblen anythin layer:
n, =nx/2L% or Gn, /&*=n/%
However the diffusion equation applies for small gradients and the lower onmder ter
| 2@% n /O disappears in a thin layéra-  <and efy.(2.3.5) will become:
un/pt = f@@xp¢ H/KT + S/K)QGINhOE /KT) O@n/px =

= n@ROO/L)@@xp¢ H/KT + S/K)QINh@E 6 / k T) =

= n@@xp¢ H/KT + S/K)QINhDE/KT) =
Thus:pn/ut = COGINhDE /KT), (2.3.10)
identical to the general reaction equattdrequilibrium theory The overall behavicd-
ways can bgiven in the form of eq.(2.3.10) of a first order reactiepading on the local
corcentration near the interfaces. This concentrationd@livom measuring the re@mn
rate. Processes in woaddstructuralmaterialsthus follow theelementaryeactionequa-
tion what isfurtherdiscussed below in 2.4.

2.4. Transformation kinetics
2.4.1. General aspects of reaction kinetics and reaction order



Mostly a reaction equation is given in the begig and end states of the reacting miater

als thus as a sum tife amounts of reactants turning to the sum of amounts of products. In
such a reaction equation the reaction order is not knowregputding this equation as if it

is a true equation in molecules, an empirical reaction order is obtained. For instance the
rate of the turnout of the product P by thectiem of the reactants A and B is:

dP/dt = KA"B™ (2.4.1.1)
where n ad m are epirical values. When this equation does not give thiecolar real-

ty of n molecules A and m moleculesiBshould not be used because it will not apply in

all circumstances. The reaction equation thus should be given at the molellahlere

n andm are numbers akacting molecules. At theatecular kvel, there always are many
sucessive elementary reactisteps with intermadry products and the reaction edioa

of this mechanism should be given in the determining elementary step with thetslowe
rate. In a thin gas, molecules willlide with each other and thrown back like elastic balls
and some of them will have higher speeds by the collisions than others and are energized
and as such even may get such a high speed that they are calledtivdied giving a

reaction at the collision by a change of the electron structure and kemahgesment.

Because 2 molecules are involved in the collision the reaction can be expected to be of the
second order or bimolelar. For instance:

A+A W P or  dPidi=KA (2.4.1.2)

It is not very probable that in a thin gas, 3 molecules will collide at the same time, in the
right directions and reaction orders3>&nd more are not very probable. The order 3 is

more probable in a liquid as a result of two successive bimolecular reactions within a very
short time. Mostly however first order reactions occur at higher concentrations s wil
shown below. The occuance of first order retions is evident for elementargaction

steps of decompositicend ofisomeriztion having the form of:

A 1/252- B+ C respectively: Al/zbz- A giving both: - dA/dt = K&
In generd the order follows from the mechanism of a collision equilibrium:

&L Ys K,

A+A A + A* followed by the chemical reaction: Aﬂ/zbé- P
7 Ky

where A* is an activated molecule. Now both reactions will have the rate sfdtvest
determining step. Thus the rate of the shift of the equilibrium dA*/dt is equal to the rate of
the product formation dP/dt or:
k,@%i k,BA* = k,B* or:

k,A? k,k,A’
K, + K,A K, + K,A
For small concentrations in dilute solutions or gasses,é << k; and the rate:
dP/dt = k@? follows the second order reaction.
At higher concentrations A, as is the case in soligld, ¥> k; and thereaction rate:
dP/dt = (kk,/k,)@ (2.4.1.4)
shows a first order reaction.

For solids, because of the high density, also for relative small concentratiwt®edler
reaction equatioalwaysoccurs as can be seen from the following naagm.

A* = and dP/dt = ki = (2.4.1.3)

ML -
A+A . A + A* due to the exchange of vibrational energy,
1
22 k. . _
A+N o | N + A* due to theexchangef energy with not reactg mok-
4



culesN, that are not able to jump, and:
A* l/zbg_ P
In total there is no accumulation of the intermediate product A* and:
dA*/dt =0 = k@i ko@A* + ksBN i ks®IA* - ks®* or:
k,A? +k ,AN
K, + K,A +kN
and for smaller values of A and always high values of N is? f&&,/k:)@ and:
dP/dt = kA* © (Kgk,/ks)@ (2.4.1.6)
and there is a first order rate equation for solids similar to eq.(2.4.1.4). And alsoy¥en k

not much smaller thans®, there is a first order reaction.
When k; is much higher thand@, is:
dP/dt = kA* °© k,@AN (2.4.1.7)
also a first order reaction in A, becaused te regarded to be constaviastly diffusion,
eq.(2.4.17) is determining and not the chemical reaction at thefaue, eq.(2.4.1.6).
Because of the applied constant boundary conditions, transformations occur at a constant
rate. This steady state also occurs when the number of sites fordienresaconsant as
for instance for the reaction of gases at the boundary ofrargjavire. Determining for
diffusion in solids is the number of free spaces, where molecules may jump in. ifhis nu
ber of holes like lattice defects, dislocations, etc., can be corsliamting from the mn-
imum energy of formation of these holes. This constant number of hgle#l Ae divided
among A and A* in the last mechanism and eq.(2.4.1.5) becomes yith8A + A* or A
= Al A*:
At = kA®+KAN K N(A, - A% or Ax=— KaNA
K, + K,A+k NN K, +k N kK,N +k N +k,

giving a rate of:
dP/dt = k@* © [kk,/(ks + ky)]@, or: dP/dt° k,MA,, similarto eq.(2.4.1.6)
and eq.(2.4.1.7powever showing zero order reactions.
The first order reamns thus may reach a steady state, explaining the quasi zeroesrder r
actions of transformations. At the end of the reaction, near equilibrium, wjismét
limiting any more, the reaction again becomes of the fidgro
For liquids, thebehavioris a bit more complicated. The molecules do not move free, as in
a thin gas, but interact with their neighbours and collide many times against thieir neig
bours (about 150 times at 293 K) before diffusing away to the next spot where the same
will be repeatedlf the activation energy is low, a few collisions will lead to a reaction and
the speed of the reaction is determined by the speed of diffusion. Whesstitfagion @&-
ergy is highdiffusion is not limiting any more for the speed of product formation hed t
speed of the reaction liswer and thus determining. Tiheechanism is:

V- K,

22,

Again the speed of the shift of the equilibrium is equal to the speed of the praduct fo
mation or:

A* =

(2.4.1.5)

(2.4.1.8)

A+B [AB] v P

v = ks@B i kq@AB] = k,QAB] or: [AB] = kk‘ff’ and v =dP/dt=§AB] or:
1 -d
_ k,k,AB
V= —kl Tk (2.4.1.9)

leading to a second aer reaction.



When k >> k4, diffusion is detemining or:

v = kOB (2.4.1.10)
and when k <<Jg, the chemical reaction is determining or:
v = (kikg/k @B  (© k,AB) (2.4.1.11)

Mostly diffusion is determining and eq.(2.4.1.10) will apply. However, wood is ngt a li
uid with free moving moleculethat may show aecond order reaction and a mechanism
with an ntermediate product (given above by [A,B]). Transformation models of wood thus
should not be baseds doneon extrapolation of models of dilute liquid solutions and thin
gassesvith higher order reactionsecause théehaviorthen cannot be madem@stent.
As mentioned before, transformations are analyzed by tisengmpirical equ#on,
eg.(2.4.1.1). This equation can bettem in general:
S L1 0A L Angncne (2.4.1.12)

a dt
With the ratio of the initial concentrationsy AB, : Co=a: b : ¢, and with a conrston of
X,ist A=Ay X; B=(AyT X)(b/a); and C = (41 X)(c/a), and substitution of theselva
ues ineq.(2.4.1.12) gives:

1 dA _ YN o Nos C Ne 1o n
= = =k(Ay X)((Ag X)) TR((A g X)) T K&, X) T,

a dt a a
where R= ny+ Ny + .. Thus in general applies:

- (2—'? =k"A" (2.4.1.13)

. . . A
The ®lution of this equation is for n = 1: In(TO) =k"t
1
'Aon- 1
With: A = Ag@L i y), with y =fractionalconversion, the solution is at a certaihueaof y:

" 1 1— 1
k ty :m.((l- y) n An_-l (2.4.1.14)
0

or: log(t,)=log(f(n,k",y)) -(n 1) log(A ) (2.4.1.15)
making it possible to determine theordedo f t he fireacti onol-at regar
ue of y,doing tests with mutual different values of. Alowever, as will be shown later,

this experimentalalue ofn = n, + n, +n_ ° 1 appliesfor all processes in wood his

lowest overall order n = 1hews that there is one speed detaing sep and that there are

no mechanisms with intermediate products. Further, thelglighter value of the order

than one, at higher concentrations, indicates that series reactions are acting (and not co
current reactions).

Based on these results it is piie and convenient to obtain general solutions of the often
complex reactions of the transformations by a sinus series expansion of the potential ene
gy surface (as is discussed2). Based on the symmetry atitions of the orthognal
components theng a not changing, thus steady stateermediate conceration in the
succesise steps causing a behavlike one elenentary symmetrical reactidar each
componen{2].

and for n, 1: k"t:il.((l RV G
n_

2.4.2. Kinetics of phase transformations

A number of phases may be involvedaitransformation and may interact in many ways.
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Typical transformations are given by the followioegerallphase changewritten in syn-
bols of the phases:

av%- a+b _ 5 (2.4.2.2)
where the matri}Jand the product phasehave the same structure but diéat compos
tions. While theb phase nucleates and grows, solutes drain out of the matrixUipetil
comesy,;

a ¥%- b, (2.4.2.2)
that may represent a change of the bond structure;
gY%- a+b (2.4.2.3)

where the product consist of two phases which nucleate and grow as ait®@mpo

On quenching an alloy the precipitation reaction eq.(2.4.2.1) may occur. Duringithis t
formation, considerable movement of atoms must take place so that a new lattice is created
in place of the old one and the solute is redistributed in order to create the compdsition di
ference between the phases.

Eq.(2.4.2.2) may repreat a polymorpit transition showing no compositional changes.
Atomic movements are still required for the creation of the new lattice.

Eq.(2.4.2.3) may represemt autectoidransformation This reation requires dfusion

and partiioning of elements and may sh@eaveral processs at the same tinveth compma-

rable activation energies. Considerable atomic movements are required to achiefve the di
ferences in structure and changes in composition.

As discussed before, only the first ordeaction according to the tyjeé transformation
similar to eq.(2.4.2.2) is possible f@pod polymersand need to be discusséa general
mayapply in this case, for different probabilities of jumps in forwards and backwiards d
rections, the first order re@on equation:

IN/ it =C,N, - C,N, = (KT/hXiN;@xp¢ E/KT) - N,@xp¢ EJKT)] =

_ kT . a E+E§. &F -E +KT.In(N,/ N, )8

= N,.N, @Xp§ KT Q@'nhgc KT 0 (2.4.2.4)
UN/ut = 0 at equilibrium. Thus sinh(x) =0 or x = 0. Thus at equilibrium is:
N/ Ny = exp((ET Ep)/KT) (2.4.2.5)

and eq.(2.4.2.4) can be written:

uN KT & E,+E, 04N, N,
E _T.m.expg 2kT g&"\lfe ) N be *

Intheclas i ¢ al -sitsatt eeadd ym ¢edtienl,grow af the embryo féddbws from su-

cessive reactions and thus from #uelition of a large number of edigms, eq.(2.4.2.6),

and only the first and last value of N remain, givg= N, andN, = 0. According to

the classical modeN , = Oat the critical size of the dimyos because then they are not in
equilibrium and spontaneously grow into the stable product phasél fsr0, eq.(2.4.2.6)

turns to eq.(2.4.2.7). This tv@ver only is possible for high values of the driving force.

Then x is high in sinh(x) and thus: sinh@xgxp(x)/2 and eq.(2.4.2.4) becomes:

UN/pt © (KT/h)ON; @xp( E; /KT) (2.4.2.7)

showing only a forward reactioMN(, = 0). An implication of the classical steastate

model of nucleation, eq.(2.4.2.7) thus is, that tlaeeehigh driving forces and the classical
modelthuscan not apply in general also for low driving forcesasbehaviomear eqi+

librium.

The same applies for the cl assidngtbthisiequi | i b
model embryos are formed asesult of a large number of bimoleculeaations:

10: Ot

(2.4.2.6)
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1
O,+0O 5‘%2-/2

1
O+ 0O 5‘%2-/2
e éé.

Onoy+ 0 %7

no, 9%

giving for equilibrium: exp((E7 Ef)/KT) = (Nn/Nt)/(Nlth)no (N//Np) © N/Ny,
because: N=N; + % NN; and thus: (WNy)"°© 1"° 1.
Thus whatever the reaction order i&@der partial, or it order total), the reactioreb
haves like a first order reaction with a low concentration of the product, the embryo,
N, << N, and thus with: (B Ep) >> KT.Thus, also the classical equilionn model of
nucleation implies high driving forces and higictivation energies at nucleation in order to
explain theoccurringfirst order reaction.
For a general description, the nucleation mechanism should show growth of the grains by
diffusion at the grain boundaries and thus also should follow thesidiff equirements (in
stead of the questionable conditiop-NO of the classical model). At diffusion the same
sites are involved in forwards and backwards jumps, thgis:Nd = N; and eq.(2.4.2.4)
becomes:

0('1_':' . ZET N, %Esz c_)smhgeTkT (2.4.2.8)

In this equation is: £ E - sV;and g =E, + sV, wheres is the local stress on the
sites and Yand \} are the activation volumes.

For an isotropic material, or an orthotropic material like wood in the maictidime, there

is no difference in positive and negative flamd positive or negative shestrength etc.
and:s;V; =%, ¥.

Also for an anisotropic material, expansion of the activation energy surface mayp-be sy
metrical with respect to the activation work tegnv, [2], and no distirction is possible
whether a norsymmetrical procesgg.(2.4.2.8), is acting or dérent symmetrical o~
cesses are active. Eq.(248) thus becomes for each pess:

dN  2kT a E'+E'O . &E -E/'+2sV(
Gt - p NeewE g osithet— 0 (2.42.9)

This rate is zero when sinh(x) = 0, thus when x = 0. ThiigV2= E; i E, and the sinh
term in eq.(2.4.2.9) becomes: sinB[((8,)®)/kT]. Thus, the process starts when the
stress is abové,. For a stress below, the equilibrium concentriain according to
eq.(2.4.2.5) applies ardiN/dt = 0.

For phase transformations, there is a chemical potentigharmbrresponding,, as dri-
ing force, is positive and the shtérm in eq.(2.4.2.9) is, when no external stiessgo-
plied and the intemd stress, as usual,nggligible

sinh[((sq + S)@)/(KT)] °© sinh[(s,&)/(KT)].

A phase transformation of a single component system cannot be caused by a com
positional gradient and only the stranergy gradient by an applied external stresg-dete
mines the flux. Then E=E, = &nd eq.(2.4.2.9) becomes:

12



O('j—':' . %T.Nt.expge %E‘)sinhga{%/'_g (2.4.2.10)

as applies for creep of materials by s#ffusion [2].

When there are structural changegin\eq.(2.4.2.10)d not constant and assdiissed in

[2] at 3.5, the concentration term in the equation is more general:

N QI A/l ,

where 2 is the jump distance of the activated unit; A, the eeesdion of that unit; ; the
distance between the activated sites, apgdH¢ number of these sites per unit area. Then
N/l ;1 = N; is the number of activated elements per unitre. The activation volume is:
Vo= 2 A, and the work by thiocalstress f on the unitis: 2 =1 A.

The equivalent work by the past of thetotal mean technical macro stressthat acts at

the site iss times the unit area thus is:

sQAO = NfOA or: fOA= sl /N = sV,

where V =| /N, is used in eq.(2.4.2.9) and eq.(2.4.2.10).

With C = (2kT/nYfexp- E6/ k T) , e q . (I, alsodor Sructur@l xharigess: gener a
d(N2l A/l )/dt = QN2 A/l )@inh(s| /NKT) (2.4.2.11)

If the structurd A is constant, eq.(2.4.2.11) is analogous to eq.(2.4.2.10):

dN/dt = QN,Ginh@! /NKT)

and when teB maximal concentration of sites is reachegs= N\;,, (or N, is canstant and

is minimal) this egation becomegas eq.2.4.1.8)

dN/dt = QD,@inh! /NKT),

showing a constant rate. In eq.(2.4.2.11), A ahd &fe mathematically the same in the
equation and A can be taken to be constant, as is mostly the case, and whey not, a
change of A can be accounteglan equivalent change of 1/and eq.(2.4.2.11) becomes:
d(N,l /I )/dt = QN /1 )QinhI /INKT)  or:

din(Ny/dt + din¢ )/dt + din(1I ;)/dt = GSinh@I /NKT) (2.4.2.12)

It appears that each parameter, or each term at the left side of the equation, may dominate
at different time ranges. Writing this equation like:

din(Ny/dt + din( )/dt- CQinh@ I /NKT) = - din(1/ ,)/dt,

it is seen that the right and left side of the equation have different variables and there
should be a separation constant This constant however will be small because

d(In(24 ,))/dt = C, can be about zero in senime ranged.g.atthe celay time). Thus the
change of 1/; will be due to a separate process and need not to occur in combination with
the change of the other 2 variables in the same equation and eq.(2.4.2.12) thus splits into
two equations eq.(2.4.8)and (2.4.2.14):

d(In(1A ))/dt =din(N,/1 ;) / d tQinhE | /INGKT) (2.4.2.13)

and: din(N)/dt + din{ )/dt = GQSinh| /NKT) (2.4.2.14)

with constant and N, in eq.(2.4.2.13).

Eq.(2.4.2.14) applies when thetlaind side of the equal sign is positive, as is the term at
the right hand side. When the left hand side is negative, a minus sign should be used before
the term at the right hand side. This means that absolute values of the variables should be
used. EqZ.4.2.14) also can be written:

- dIin(1/Ny)/dt + dIr /dt = GSinh@| /NKT) or:

din(l /|N,))/dt + dIn] |/dt = GSinhE! /NKT) or:

|dIn@ /N,)/dt| = GSinhs! /NKT) = } din(N/I )/dt]| (2.4.2.15)

13



and it is seen that nfamatically N and 1I are the same variables and often one can be
regarded to be constant while any change can be accounteminpansatedhange of
the oher parameter.
d(N,/l p/dt and d(N\/I )/dt of eq.(2.4.2.13) an(R.4.2.15) are relate increases of
the number of sites and may replace the concentration rate dN/dt of eq.(2.4.2.10).
A further simplification of eq.(2.4.2.10pcn b e made f or> kliThdnthe al ues
temperature dependent term kT/h can be replaced by a comstaamd can be written as:
(KT4/h)@T/T y), where T is theDebyetempesgture or some other mean temperature and:
kT4/h is theDebyefrequencyny, or some other mean frequentyT/T4 can be witten as:
T/Tq=expt In(T4T)) =exp€In(1 + (T41 T)/T) © expt (T4T T)/T) and tecause:
E =H T ST, the term exp(E/KT) becomes:

T a E§ & H'+kT,- ST- KTQ, a H'-S'Td

P A i T A
and because kk< H and k << § the enthalpy Hand entropy Sheed hardly be corresd
when kT/h is replaced l:géor by a chosen mean valgeEq.(2.4.2.10) thusdsomes:

dN & E' 4. s |
— =2 IN;-ex - 2.4.2.16
dt PR ¢ 'g%aT. (24.219)

For the usually described transformations, the driving fad@ehich should be obtained
empirically, as the other variablem)e mostly very low near theguilibrium temperature.

For instance for grain growth this is two orders lower than that for precipitate coarsening
or that of ecrystallization by cold working or of polymorphic transformations (per’@e

or of solidification or melting (per degree @hd this group of driving forces is again 3

orders lower than that for diffusion in solid stibns (being 0.7.RT = 1.4 kcaibl for d-

lute sdutions at 1000 K) what again can be one order lower than the driving force for some
chemical reetions like the 6rmation of intermetallic compounds or 2 orders lower than

that of a chemical reaction likeeg.oxidation. At the low transformin stresses (and dFi

ing forces), théoehaviormay becomejuasi Newtoniandcause: sinlj(s) °© j s and the

rate is about lingadependent on the driving force or stres$n general, Newtoniabe-
havioronly is possible for small spherical fecules (see appendix Then, and because

of a high concentration of vacancies at the
is not any longer proporti@al to the initial stress as in the nlomear case. Further, noheo

ly the stress, but also the aetion volume is small at the occurring vacancy naaesm.

For low values of the driving forceyE E; << 2KT, eq.(2.4.2.8) becaem:

dN _E, - E E +E,Q 2DE & E'~

e N, szée KT 9 exp'ée (2.4.2.17)
with E,= E + DE and E=E - DE, or becomes analogous to eq.(2.4.2.10):

dN _ 2sVN, a E'6 25 I é

(2.4.2.18)

dt = h P72
becaussV = sl /Njand N per unlt volume is comparable with, Ner unit area divided
by the distancé, or: N; = NI ; (see [2] or above).
The last 2 equations thus only may apaiymeasurable ratef)r some(melting) crystd-
line materials (of roud molecules) and not for tifmfinite) long molecules in wood.
The rate dN/dof eq.(2.4.2.18) is constant at constant stress and tempesétoneng that
| 1 is constant and aldois constant or can be taken to bestant because any variation in
| cannot be distinguished from the variation of 1/N in the equdig(2.4.2.13) thusnay
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applyfor high loading.

The chemical forcenay act in the same way as gpléed stress:

(Ep T B ), =DENJUN,=DE/l ;=25 N;/Ny=2s /I ;,

and also e@2.4.2.17) has a constant rate. The chemical force is dug.tdiffeences in

the crystal structure and composition of the parent and product phases. The influence of the
stress, due to the elastic strain energy by the accommodation of the diffenetheesg-

cific volumes of the parent and product phases and theatches at the interfaces, mostly
is small in the tests arglof eq.(2.4.2.18):

S =S.*+5S.° s, nearly is caused by the chemical fosgalone.

For higher values of the driving fordg, i E; >> 2kT, eq.(2.4.8) and eq.(2.4.2.10) are:
O('j—':' - uN-exp%e %g-expg%zg (2.4.2.19)

with: DE =DE/N =s /N.

2.5. Empirical relations

The empirical classical nucléamh model will discussed in a next chap¥food plymers

do not show spherulitew folded molecules and thus will not show nucleation as a barrier
to growth or decomposition. Howevdrplays a role in transformations relatgde bond
breaking, thuso moigure content change and eaj.(re-)crystallizationof crystallitesand

the discussion ofutleation and a derivation of a new right theory is neceseatynly

for nucleating polymers, but ald@cause in a RILEMproposaland ECreports the wrong
and impossible classical nucleation equation of solidification (needing infinitgyetoe
obtain equilibrium) is regarded to be the basic equation for all tnematmns and even for
all time dependertiehavior(like creep). The derivation of the rigtimeory thus ism-

portant alsoto show that nuckgion is just a common example of a structural change pr
cess, thus fébwing the kinetic theory of alransport pocesgs

The discussion of the classical model of nucleation anddheation ofnewexect theory

as correctionis givenin B(2011) and inSectionB.4i A new t hesoirgn®@f nuc]

2.5.1. Parameter estimation and explanation of the empirical relations

All phase transformations need transport of atoms or molecules through éni@lrbgt
diffusion what is determing for the rate of thprocess. In principle, the rexules jump

from free space to the adjacent free space in thetidineof the surface of the new phase.
What means that the free spaces move in thesijgpdirection. The sdy, in general, of

the possible mvements of these free spacasyacancies and dislocatidiasid segments

of wood), will give the information on the kinetics of transformations and especially on the
possible forms of the activation volume parameter.

The diffusion flux is caused by the chemical potential gradiee to the cojposition ga-

dient or may be due to a stranergy gradient. Because of the similar effect and tke po
sible interaction with stress, the negative gradient of the chemical poteatidie regal-

ed as a chemical force on the molecules that cardbd ar opposed by the internal and
applied stresses. For a singlemponent sgem, there is no compositional gradient and the
net flux is entirely due to the stresses. Because of thessgemovement of spas, the
mechanisms are the same for phase transformation as melting and for flow by stress, and
for stressrupture and for creep and seliffusion, as follows from the same activatian e
thalpy and entropy of all these processes. &3y obtained data of sedfffusion (like

creep) thus magive information on the mechem of the solidiquid phase transfe

mation. The displacements of the free spaces can be measured indirectlysinyngea
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creep or relaxation, but often also camieasured directly by measuring the jump of the
spaces due to a stress pulse [1]. The fallgvempirical equations, applying mostly only
in a limited raige of stresses, are used toaldx the mobility of the free spaces asakis|
cations etc.:

The powelaw equation:

V=V at Qn (2.5.3.1)
— . o . . .
", °
and the nucleation equation, based on thssidal nucleation model (see 2.5.1):
a Do
2.5.3.2
v=C,. O T (2.5.3.2)

where v is the free spagelocity andt is the applied stress. €lexact theoretical transport
kinetics egation can be given in the form:

v = 2G@inh( t) © C,@xp( t) (2.5.3.3)
for high stresses.

In the following fig. 2.5.4, measurements are given that follow these equations. Hig. c fo
lows the exact e(R.5.3.3) and cannot be represented by the other 2 equations. Rig. b fo
lows eq.(2.5.3.2pnly and fig. a follows the pmer law eq.(2.5.3.1).

To explain and compare theempirical equations, the Howing derivation is made.

2.5.2. Derivation of the power law.

Any function f(x) always can be written in a reducedafalle x/»
f(x) = f1(x/xo)

and can be given in the power of adtion:

f(x) = f1(X/x0) = [{f 1%} ™" and expanded into the row:

(X)

fx) =f(xo) + — 0f( Xo) + £ (Xg) + voenens

giving:

f(x)zgfl(l)}l/n £ Xl {1(1)}1/H'f @ *. fl#l)'ae@ ¢
é Xo U X@

when: (fl(l))”“:(fl(l))”“cmo( 1)/ norn=f5( 13)/ f
where: §6 (1 Mfi(xBo)/H(X/x0)] forx =%  and f(1) = f(xo)

(@ _ (%)
f(D)  f(x)
It is seen from this derivation of the power law, eq.(2.5.3.4), using only the first 2dexpan
ed terms, that the equation only applies imatéid range of x aroundyx

Using this approach on eq.(2.5.3.2) gives:

. DIty
Do at o
v=C_C expge 08?_0 (2.5.3.5)

Axo
Thus:f(x)=f(x0)-$()ig with n = (2.5.3.4)
X

and using this approach on eq.(2.5.3.3) gives:

o ~

v=C,exp(f p° vo-%t—g (2.5.3.6)
o

Thus within a short range of stresses adarthere is no difference in fits according to
eq.(2.5.3.1), eq.(2.5.3.2) or eq.(2.5.3.3) by the use of the same power law.
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Fig. 2.5.4. The stress dependence of daioo velocity in metals [1]

This can be seen in fig. 2.5.5 a, b and c, at high stress, where, for the same tests on Ge, in
a limited high stress range, fitting is possible according to all &iegs eq.(2.5.3.1) to
(2.5.3.3).The paver n of eq.(2.5.3.1) can be found frohe tslope of the double lggot:

In(v) = In(w) + ndn(t/te) (2.5.3.7)

n = dIn(v)/din¢/to) here,and,similarly according to eq.(2.5.3.5) to eq.(2.5.3.7):

n=Dhko=] to, and comparison is possible of the constants oéimgirical equations with
theexactparameterj of the exact equation.
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When over a long range of stresses, eq.(2.5.3.2) applies and the seiot kaidn(v)
against 1/ shows a constant slop®, then the parameter of the exact equatias ac-
cording toj to = D/ty, equald j = D/t%. This parameter of the nuelon equatiomwill
be shown to be righbr the nucleation mechanism of tlguid-solid transfomation. The
semi logplot of the exact equation, eq.(2.5.3.3) is \jith D/t%:

_0’2_ | G 664 K
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-0,6 —
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Fig. 2.55. Examples of stress deglemcyof thedislocation velocityof Ge[1].

Ln(v) = In(Cy) +j t = In(G,) + Dt/t% (£ In(Cp) + Dftto) (2.5.3.8)
Because the dislogah mobility tests are done with stress pulses that are long enough to
get steady state velocities the applied strasequal to the initial@plied stress, and
eq.(2.5.3.8) becomes equaleq(2.5.3.2)what thus is the equation of the collectioratyf
differentpulse testsvi t h  d i dnd hasoemeaninddr onedurationtestat constant

(. Eq.(2.5.3.8) shows that for stress relaxatfon ¢gnedurationtest,thus not for stress
pulse tests) therwill be a straightine In(v) - t - plot ard not a In(v) 1/t - plot, what is
verified by experiments in a sufficient wide stress range. This means that the classical n
cleation model (of nucleation of mobile segments by overcoming of point defectsflor mo
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els like crystal matrix drag (twdimensimal kink-motion model) all according to
eq.(2.5.3.2), are not right and should be tejg@tecause of the evidence of the different
behaviorat selfdiffusion in creep and stresslaxation experiments that fulban be g-
plained by the activation volunpgarametej of the exact molecular transport kinetice-th
ory whichis able to explaiall aspects of time dependdaghavior. In the same way as for
the nucleation equation, that shows a speciakvafyi, the power lavbehavior when it
applies over a lag range obtresses, represents a mauke with a special property of the
acivation vdume parametgr. The costant slope n of the double kpipt of In(v) against
In(t) of eq.(2.5.3.1)given in fig. 2.5.4 aand 2.5.6 a, is equal jdo and the expgmental
verification of the constary ofj tois shown in figure 2.5.6 c. The mechanism with this
property of] is found in many matials as in BCCFCC and HPC mats and non

metallic crysals and also ie.g.concrete and wood. It was shown in [2], thiais property
of the activation volume, causes the stresisne equivalence and because in wood also in
this case the aetation volume is independent of thenjgerature, the timéemperature
equivalence also applies for this mextism.

With the speciavalue ofj = nfy, €q.(2.5.3.3) becomes:

In(v) = In(G) +j t =In(Cy) + ndity (2.5.3.9)
and the semliog-plot of In(v) against (=
0 to) now shows a slope oft/that is dffe-

rent for everypulse testvalue oft (=tg)
in the plot, thus aurved line, given in
' G data fig. 2.5.6 b. It fdlows also from
e(.(2.5.3.9) that: din(v)/dln) = t n(v)/dt
=t@/to. This is:to@/to = n for the pulse
testscollectionof the dislocation mobility
testswhere eaclapplied stressis equal
to the initial appked stress$o. Only in this
case the constant value n of the slope of
-3 the double logplot may exisin a wide
range, as measured (see fig.2.5.4 a). At
thesame time, for the stresslaxation
4 tests (that i s egathight est
stresses, the stght semi logplot: In(v) -
t - plot appliesaccording to eq.(2.5.3.9),
what thus is no agradiction but is fully
& explained here by the exact theory by the
other type of loding.

log(dislocation velocity in mm/sec)

L
0 5 10 15 20 25 30
Shear stress in Mpa

Fig. 2.5.6 b. dislocation veloity in Mo I -d-a tow stress sintequation
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Fig.2.5.4. c. shows that also a mechanism exists with a constant value ed.(2.5.3.3).
This does not only apply for polycrystalline material like Ni, but also occurs in other mat
rials and in wood, for instance in a species witheay grain,as is measured by Kingst

and Clarck and appliegenerally for woodor adominating mechaneorptive éfect

The empirical laws only apply for high stresses because at low stresses thareasno
ablemobility of dislocationsand otherymping elementetc.

2.6. Liquid-solid transformations

As known, crystallization is the formation of crystalline solids from liquidscdtucs by
nucleation of crystals and the growth of the nucleated part®éEmuse the dory is ex-
tended in B(2@1),andin Section B.4thisformerSection 2.6 is scratched this place.

2.7.  Short range diffusion

Because the (infinite) long wogablymers only show structural changes by side bond

breaking and not by breaking of primary bonds, transformatiphsngrrange transport of

atoms are not possible in wood. The transformations aremdetal by interface processes

and only may show a sherange like tangort. Examples are given in 2&Ithough

these transfor mati ons a pinilarpehdviors sofdtireest oni an o
expected to be possible foolymess like wood, as also implicitly follows from these of

eq.(2.7.4) This thus haso be discussed. The shoaingetransformatios showcharges in

the structure and no compositional chandéeey occur by nucleation and diffusional

growth. The interface controlled growth follows the kinetic equation as giv8(2011)

%—2 R, expae—— -Osmh—kéff —2% exp —ée E (2.7.1)

The growth rate then is constant at a fixed temperature and each dimensiogroiihg
particle of the product phase increases linearly with time. Followingh&kransformation
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can be regarded in the time interM@kt < t. The increase of the number of nuclei per unit
volume during the timetds: (dN/dtYdt where dN/dt ishie constant rate of homogeneous
nucleation per unit volume. When thetr®pic growth is not restrained by other particles,
each nucleus, occurring atgrows in the time intervdland t into a sphere of radius:
(dR/dt)Jt - t). The extended yame V; of all the nuclei thus is:

t
V, = 43'0 ggﬂo (t- ' == dN z z':' %éjd—Tg t* 2.7.2)
When the growing partlcles Impinge on each other, a common boundary is formed and the
growth over this bouttary stops while the growth continues in the other directions. At an
increase ofitme dt, the increase of the volume dV m#yopossible in the untransformed
part. Hence: dV = dy1 i V) or upon mtegatlon In(17 V) =- Veor with eq.(2.7.2):

a dN adRo t4o n.n
V=1- exp(- V,) =1- expgep ot Fa @ 30= 1 ep(- k") (2.7.3)
Calling the extent of the reaction Y, eq.(2.7.8¢bmes:
y=1-exp(- k"t") (2.7.4)

what is identical to the empirical JuidornMehl-Avrami Equation.

Regarded by this derivation thus is not the transient stage of increasing rates, as applies for
wood, but only the steady state stage of tamtgates dN/dt and dR/dtich isnot poss

ble inwood and other crodsked polymers. Also the end stage approaching equuhtor

is not regarded and the equation thus is an approximatidofoogeneousteady state
behavioronly.

Transformations iniated by a fixed number of randomly distributed-présting nuclei N

with a constant and isotropic growth rate have,afy

4p 4dR & R t°0
V,=N, 3‘3%‘3—8 4° and thus: Y = 1- expge 4pNO%i—8 t—"

and n of eq.(2.7.4) is n = 3. In fhgrained materials, nucleation occurs on threlomly
orientated grain boundaries and n = 4 in the early stages of the traattm. When the
grain boundaries are exhausted, nucleation ceases and there only is growth in one direction
perpendicular to the grain boundary and n = 1 at a later stage. There algweapossith
ities and possible values of n, mentionedteréturewhich are:
For polymorphic transformations and recrystallization n = 4 at homogenacdestion
and n = 3 for nucleation at pexisting nuclei. The same values of n apply at rangoml
distributed heterogeneous nucleation sites. For alimteat grain corners n = 4 and at a
later stage n = 3 and for grain edge nucleation n =4 and n = 2 at a later stage due to the
two-dimensional growth on grain edges. Also forsaine transformatiostherefore n = 2.
For orderdisorder transformations n = 3 for spherical grains of the ordered phase and n = 2
for disecshaped ordered grains.

Transformatns in wood are coupled withoisture content. At zero maise catent,
only damage and decompasit mayoccur. Swelling is mainly perpendicular to the grain
and n = 2 is what maximal can be expecbstause thre also is no nucleatiofowever,
the moisture content is a linear paraenen the actiation energy and Yome. This means
that the ratequation of a phase change will be volumetric with n =1
For reactions between water molecules between layersahaviorcan be approximately
Newtonian and is for instance:
dv/dt =- C& or: pdd(R®)/dt =- CHIR? or: dR/dt = C@R/2
having as saition: R = Rexp(¢ C@2).
Thus as well as the volumetric change as thaghaf the dimension R is depEmt of
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time tto the power one, or n = 1. Also at the start of the prodesisg the @lay time the
change has this exponential form, what meébhasn = 1 during the accelerated and tlece
erated stage of the transidrghavior Because the traftsmations in wood, as crodimked
polymer, can not show a stationary stage, n is always nAerieasured value of n, diffe

ent from 1 means that moreopgesseshan oneare acting and the Johnsbtehl-Avrami
equation thus is a meaningless empirical power law equation for trabskemtiorand the
exact method should be used with the tensor method to descritbehtngorin all direc-

tions. From the sepated measurements in the main material directions as well as-the off
axis directions, the volumetric descriptions can be given by thédiaational data.

2.8. Explanation of the empirical rate equations

All transformations may fit, at lowriving forces, the empirical egtion:

Y =17 expt k"t (2.8.1)

where Y is the extent of the reaction thus mostly the fraction of transformedainand k

and n are constants. The explanation of this equation is given in 2.3 gindn by

eq.(2.7.4). For transient processes the value n looses its meaning and eq.(2.8.1) is nothing
more than a power law equation. In any case, eq.(2.8.1) can be the basis for the derivation
of other empirical equations for low driving forcedtex dfferentiation and elimination of

t, this equation can be seen to follow théadential equation:

dv 1 Un

i =n-k-(1-Y)- éﬂa_—oo (2.8.2)

For small values of Y is: In(1/(LY)) = In(17 Y/(17 Y))° Y/(17 Y) and eq.(2.8.2)d
comes:

dvidt = macge- v)! " ()Y (2.8.3)
For large values of Y approaching Y = 1 closely, €q.(2.8.2) becomes:
dy/dt = nR@L1 Y) (2.8.4)

because In(X)/X approaches 1/X when X approaches infinity, and X ¥ ¥)hpproab-

es infinity when Y pgproached.

Eq.(2.8.4) is equal to eqg.(2.8.3), when n = 1 is inserted. This agrees with the result found in
2.7 that at the end of every process n should approachn =1

Eq.(2.8.2) can be written:

dy/ dt a1 g YM & yoa s ~(1-1/n)/|o,30
T =kn(t- v)° gdngi—oo -an(1 v) @qa_oo E

and the part between the squarackets can be expanded in the same way as done for
eg.(2.5.3.4) giving:

dv _dy" &1- Yol 9 ay P 285

dt  dt £1- v? EPY_'Q e
dy’ 1 66(1 m) Y 4 1-1/nb

with: i =kn(1- Y)én Y'Q and p:ﬁ-égd- In(l—-Y')9 (2.8.6)

Y is the value of Y around which the expansion ef¢hrve is made. It can be seen from
eq.(2.8.6)thatp 17 I/nwhenY- 0,andd - OwhenY- 1, asfound before.#
for all power laws, the powers p and @ depend on the part of the curve that is fitted,
thus on the choice of Y

It now is shown, that theften used empiricalegui on eq. (2. 8= 65 that ( us ed
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fits thesigmod curve of thdéransformations isthe same as eq.(2.8.1).
Equation (2.8.1) also can be written as a power law in time t, using the spamsien as
given for eq.(2.5.3.4):

0

Thus:1- Y = a1 Y,
0~¢

(2.8.7)

o
a4z
1O O

With: p = kn-to-n
All empirical equations thuare different forms of the same equatémn(2.8.1)which on-
ly applies forquasiNewtonianbehaviorand thus not for woad

2.9. Conclusions about phase transformations

The extrapolatiomf thequalitative linear viscoetdic models of lignids and soft materials

to woodmaterial] makes a discussion nesasy of these modefer the consequenceA

theaetical derivéion and correction of these moddiased on the exact theory of malec

lar kingtics, thus is dirst necesgly. New theory is derived inhapter2 about: nucleation

and heterogasous nucleation(2.5, wi t h t he corrected(@Tamman:
and the explanation of other empirical nucleation equat{@; further about the general

diffusion equatin of transformationg2.3); the reaction orde(2.4); the activation volume
parangters,(2.5); the power law(2.5); and the empirical power law rate equatiq@sj).

As shown in 2, the phase transformation models of litjkedmaterials, with proposed

linear viscoelastibehavioon | y may appl wtfomri aind d @ddqanz edds O0fi N ¢
ly cannot apply for a glassy and crystalline material like wood. In general, mawagions

models based on a free transport of structural molecules, can notdlderuseod because

the (infinite) long wooepolymers only may show structural changes by secondary side

bond breaking. For wood only modelssbd on the short range displaents are pssible

that only may give a structural change at an interface asmfeteous transfmation.

This diffusion at an interface is shown to follow thect&m equdion as given in 2.3.

For wood only diffusive transformations are possible, because the martensitie tran
formation will not occur in woodand wodl-products. Eve when a martesitic configua-
tion may exist in wood, the elementary crystalline fibrils in wood of 3 nm are too small to
be able to build up high enough internal stresses for that transformation. A derivation of a
general diffusiorequation for all kindef driving forces, eq.(2.3.5), is given in 2.3, 8hRo
i ng that Fi ck&s rdoialways applyngpecsakcasef®edaused w ar e
wood, diffusion occurs at intiaces the diffusion equation gets the form of the mowem
lecular reaction edation, &.(2.3.10).

It is shown in 2.4 that only first order reactions may occur in wéoghlue of the ader of
one is also measured. The also measured slightly lower valuertbandicates that there
is arother successive reaction. This second reactioneaadarded to be of zero order,
because of the nearly constantctaat.

It is shown in 2.4.2 that the classical steathe model and classical equilibm model of
nucleation are not right. The right basic equations for diffusion and structural claaeges
derivedin B(2011)andin SectionB.4. andshould be used in stead.

As discussed in 2.5.1, the classical nucleation theory is not right and thus also wrong is,
the thereupon b a-sequdtiomi(With itsimgpaossible iHegatigeadving
forceand the need of infinite energy to obtain equilibr) that even is proposeal be the
basic equation for all trangfmations and even for all time dependeabavior(including
creep). The right nucleation theory shows that nucleation is just an exdmapiermmon
structural change process. The other aspects also are dere/gdlas explanation of hie
erogeneousnucleation, without needing the nemistent surface stress in solids of the
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classical theory, anelg.the valueoDS 6 / k = 2 betaeertbewccuarrance/of a

faceted and a diffused interface. It appears that the empirical Tammann Hesse equation,
(eq.(2.6.5)), follows from a fit of limite®T values. WheDT approaches zero this Ta
mannequdion does not apply bihe sinhform ofeq(2.6.3),show ng t he dR/ dt a
2CD(p 0/ dor smallDT values. It thus is necessary to replace thermanmHesse eqgar

tion by theexact equation, eq.(2.6.3), whifdllows from the special form of the activation
volumeparameter

The fApower | defvedine2gAfrant firsberpanded terms of any egu
tion. Thus, every equation can be written as powerdguation. By using the power law
form, it is possible to compare and explain the power value n of eq.(2.5.3.4) of the diffe
ent empirical equatiawith those of the exact equation, eq.(2.5.3.6)j hoto get info-
mation on lis activation volume parametdr showse.g.the special form off to for nu-
cleation, eq.(2.5.3.8)nd eq.(2.6.3)etc.

To study properties as activation energy and volafpossible transforntens in na-
terials a study of movement the free spaces (the activated sites) is possible that is the same
for seltdiffusion, creep, flow, rupture and trangfmations as melting. Creep artdess
pulse experiments shoall the possile forms of the activation volume parame(2i5).

Creep testsf woodshow comparable values as founddtrer strong structural aterials.

The derivation of thempirical JohnsoiMehl-Avrami equation (see 2.7) shows that
this equation only applies ftine steady state stage of the transfions and thus can not
apply for cros-linked polymers like wood whicbannot show a steady state stage, and the
equation thus is a meaningless power law equation for wdsd the otheempirical rate
equations arshown, in 2.8to be relatedo this equatiorand toapplyonly for fictive
Newtonian mateals.

3. Thermal analysis of transitions and of decomposition of wood
3.1. Introduction

The general equilibrium theory of molecular transport kinetics, denivg], applies, by

the same equation, for all time dependent processes. Thus applies for the thermo
mechanicabehavioras creep and damage etc. [2], due to external and internal stresses and
also applies for the processes due to high teatypes alone, r@d due to the chermal or

physical driving forces of transformations as fwstance of glasganstion ([2] pg. 88),

aging, nucleation, annealing [3], etc. This implies, that the incorrect model of afree vo
ume change [3] toxplain glasstranstion has to be rejected and also the wrong nucleation
theory and rubbetheory, [4],etc., as is discussed at 2 appadices A and B.

All phenomena are explained precisely by one rea@@ration (correlation close to
one for tests on the same specimen),thrdlifferences between the pegses are only
due to different activation volume parameters.

To find the parameters for transformations, decompositions and some other structural
change processes, by thermal analysis, tipaeatures should be found whethe driving
forces,or changes in bonding or molecular arrangements, will cause amtidye on the
rate of temperature changéa specimen when the enviroent is heated (or cooled); see
fig. 3.1. The driving force then is caused by a more or lesgpabhange in the heatrco
tent. Such processes may exist in wood, occurring only at high temperatures after the first
transformation andetomposition. At lower temperatures, the temperatume and stress
time equindence make it possible to detectetiprocesses in wood that are too slow to be
measured at common temperatures. The changes, occurring by these slow chernical rea
tions (or analogous physical proses), will depend on temperature, history, stress, etc.
and are e.g. known agiag effects ¢eed).

24



The techniques used in thermal analysis are:

- the differential thermal analysis (DTA) in which the temperature differeaeeekn a
substance and a reference material (with known properties and ritidrenstc. in that
temperature range) iseasured as a function of the temperature while both materials are
subjected to a controlled temperature program.
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- the differential scanning calorimetry (DSC), being the same as DTA howstead of

the temperature difference, the difference in energy inputs of bothiatmisrmeasured.

- the thermogravimetry (TG) in which the mass of a substance is measured when subjected
to a controlled temperature program (also gas evolution etbecareasured). The deaiv

tive thermogravimetry (DTG) shows the same peaks as the other methods (see fig. 3.1.a).
- the thermodilatometry, in which the dimension of a substance is measured whet: subjec
ed to the teperature program.

- the thermomechanicah@n-oscillatory) and gnamic thermomechanometry where the

static modulus and dynamic modulus (with damping) are measuredctisriuf the ten-
perature at a temperature program.

- Other physical properties as sound emission, acoustic vehavior opticd, electric,
magneticetc., chareteristics also can be used.

3.2. Thermogravimetry of wood.

By thermogravimetry, the decomposition at transformations of wood mostly is determined
by measuring the weight loss. However there also is a weight lossibyg drnydisappea

ance of filler material at heaty and there also is bond breakwithout weight loss. For

wood, therefore TG as well as DSC is used. ditbalpy found and reported by these
methods is only indicative because of:
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the gas lost; the comhtien of these gasses, determining also the reaction within tke spe
imen; the successive and simultaneous reactions, giving overlapping peaksuthech
wrong equation and driving force and wrong reaction order, (different from order one) for
the determiation of the activation enthalpy, assing also that only one process is acting,
giving e.g. apparent changing activation parameters with the extend of ¢therreihe
structural transitions in wood that only are possible after the previous, or ai@éiise
acting decompositioreactions,etc. The peaks further may result from many influences,
some of which are cinacteristic of the tests and sample holdeeadsy and not of the
sample sothat the measurements of all laboratories differ from etdwr.oThe wide range
of reported activation energies, obtained by the different interpretations, equatiores and d
vices, thus is not astshing. The results thus have no meaning unless they agree with the
results of the thermmechanical method.

Because bthe mentioned influence of the reaction of the gasses with air, thee mea
urements in air have no meaning for the parameter estimation of traasifins in wood.
This should be done in an inert environment as in nitregehonly these measurements,
as gven in fig. 3.1.b, thushould be discussed
It is seen in fig. 3.1.b that endothermic melting and degradation causes ftitdiposs
exothermic degradation, so that both processes are overlappinanciplprthus only one
two-stage process is actin@he firstprocess creates the sites of the second process).

Important for the thermgravimetricanalysis is the proof ig, that all transformations
follow one or two first order reactions that are not directly dependent on the overall co
centration. his is not known and every analysis imi#ture is based on one otian of a
broken order or of even a higher order than one, giving wrong results. For wood, values
close to order one are measured. The remaining small deviation from this orden-one ind
cates that mother process is acting. In the past (see e.g. [10]) the fit of the data was done as
wavy as possible, even following the small steering deviations. The resulting many very
small peaks, (crinkles on the main peak), that are also influendbe loged test pree
dure and equipment of the thas-gravimetric tests, were reghied as separate adjacent
mechanisms. Mostly out of the many peaks, about 5 peaks where arbitrarily chogen to re
resent the degradation of: the filler mass and hemicelluloggtatiine celulose; amorph
cellulose;bonding by lignine; lignine pducts. This arbitrary split of a reteon into many
forward reactions, with wrong activation energy parameters, leads to rgleasireaction
orders between 0.6 and 4, and aegistingenthalpies of the peaks between 38 an5
kcal/mol. Further, as disissed before, wood is a-polymer and thus will not show s&p
rate transition peaks of the different components. Changing theosdiop of wood by
removing a component then will not nds in a disappearance of the peak of that comp
nent but will shift thesinglepeak of the cgpolymer wood to lower temperatures. For i
stance, the peak of the DI¢airve, follows from the steepest slope of the-diggram of
fig. 5.1. Wood does not show tpeaks (steepest slopes) of the congmts and the peak
of holocellulose (what is wood with removed lignin) shifts to a lower temperature. Thus,
possible other peaks are due to enforced testing and damasjgould not be ssociated
with transforméions d components, as is done e.g. in [16] by the multiple transitions
model(of Huet)

Regardinggas evolution of wood powds(i.e. of a destroyed chaistructure inferior
to the structure of wogdhe following description can be found in literature [7]:
At high temperatures, there always are chemical reactions also with air causing decompos
tion and pyrolysis. Below 10 (the boundary where bonded water is freed), only drying
occurs and chemical reactions in filler material can be neeglep to about50°C. At
that temperature, there is disintegration but volatilizeon of wood extractives and fgre
ably of some low molecular weighgtiin filler material. Between 150 and 280 the gas
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formation starts of mainly C£&and CO, showing carbohydrate diggration (probably by
pyrolysis of filler meterial and norstructural lignin and hemicellulose). Above

organic acids may evolve from the side groups of hemicellulose. Lignin degrades to pr
duce aomatic conpounds and a variety of low moleculasga. Above 286C the CQ

and CO prduction goes down (thus showing the end of a peak) and combustiblaha
drates (GHr) are formed and the reaction becomes exothermic. Abov&5asociation
is noticeable by the start of strong hydrogep) idrmaion that daninates above 70C.
However,higher transition temperatures are found for less degradech#tstial tharthe
usedmilled powders.

3.3. Thermogravimetric analysis
The kinetic analysis is based on the general forward reaction equa(d4 4g12):

- E‘d_A = kA NagMoche
a dt
what is shown there to be, with A 3 A X:
1dA n,+n,+n,
S =k'(A,- X)
with the conversion X and thus in general applies:
-dA/dt = k'A"

The concentration A in this equation may bglaeed by other linearly related variables as
pressure or volume during a gas reaction or the loss in weight in a pyrolysis reaction. The
equation can be written:

In(- dA/dt) = n(A) + In(k ) = n(A) + In(n@xp¢ E/KT)) = nn(A) + In(n) T E/KT and
plotting In- dA/dt) versus 1/T for different temperatures at the same value of A, a straight
line plot is obtained with a slope:

d(In(- dA/dt) )/d(1/T) =- E/K,

giving the activation energy E. The order n of the reaction is supposed to followhfzom t
slope of the straight line of In/A/dt) versus In(A) by:

n = d(In¢ dA/dt))/d(In(A)).

However, this is not right becausaEois dependent of A. As shown before the order of
the reaction is always n = 1.

The basic kinetic transport equation fdoavard and backward reaction, e.g.

eq.(2.4.2.11), is, with reactant N anél, as activation volume, with constdnt

- d(NI Ap)/dt = 2n(NI Ay)@xp¢ E/KT)SInh(DE + f AZ)/KT) (3.3.1)

For Newtonian liquids, discussed in 2, sinif{y). For noticeabléransformations in wood

the driving force is high and sinh(%)exp(x)/2 and eq.(3.3.1) becomes:

- d(NI Ap)/dt = (NI Ay)@xp¢ E/KT)@xp(DE + fl AZ)/KT) (3.3.2)

For a first order transformation there is an enthalpy and entropy cbangedthe wok

of the (chemical) driving force iDE =DH - TMS = fl A,- fl1 AT, while the work

due to the stress of the surrounding elastic material on tivatadtsite, fil A,, mostly is
negligible. For decomposition at high temperatures, the produat ghestermining for

the driving force and because work is done at the surface of the product causingua molec
lar step icrease of the pouct, the workfl A, is, integrated, any moment, proportional to
theamount of prduct, thus to the loss of weight, torthe concenétion of sites of the
product:No - N per unit volume. Eq.(3.3.2) thus becomes:

- d(NI Ap/dt = (NI Ap)@xp¢ E/KT)@xp((dNo i N)OAL)/KT) (3.3.30)
or because NA; is proportional to the active weight per unit volume w, this equdéen
comes general in the relative weight W = w/w

- dW/dt =n@v@xp( E/KT)exp(c:@LT W)/KT i c@LT W)/K) (3.3.30606)
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wherel =1 -1 T, by the enthalpic and entropic componendi&f is inserted. This egd

tion can be given in the extent of thleaction: y = (Wi w)/wo= 1T W:

-d(17 y)/dt = dy/dt =n@L i y)@xp¢ E 6 / &xp(31y/KT i coy/K) (3.3.3)

With the dynamic method, by heating the specimen at a constant rate, it is posstble to d

tect all existing transition peaks successively.

Heding a specimen at a heating rata,lhe time t of the increase of the absolute teayper

ture from zero to T, follows from t aT and the rate of weight loss is:

dw/dt = dWAdT =-dy/adT

This leads for the first order reactions in wood to:

dy/dt = dyadT = n@L1 y)@xp¢ E/KT)@xp(c1y/KT i ¢ y/Kk) or:

dy/dT =an@Li y)@xp¢ E/KT)@xp(ciy/KT - c2y/K) (3.3.4)

At the top of the peaks of the rate plot, thus at the maximal ratéyidTd = 0 or:

amAExpE E/KT Yexp(ay/KT i coy/K)Q- dy/dT i (17 y)A(E/KT)/AT +

+ (17 y)A(cy/KT 1 cy/k)/dT] = 0, or:

-dy/dT = (L Y)AEKT/AT T (17 y)A(ct/KT i coy/k)/dT (3.3.5)

In this equation is d(E/KT)/dT = d((HST)/KT) = - H/KT 2

and: d(qy/kT i coy/k)/dT = (c/kT)@y/dTi c1y/kT ?i (co/k)@y/dT

and eq.(3.3.5) becomes:

dy/dTQLT (17 y)@ /KT + (17 y)@/K) = (17 y)QH/KT 27 cy/kT?  or:

1- Q- y)o/KT+(-y)c/k & E oy cyb_ 1

H-Cy TOPET TkT T K 27 akT?

or in molar quantities, where R is the gas constant:
&81- (1- y)c,/ RT+(1- y)c,/R 8S cy®® H' cy & 1 &

e hNg(H*- cy) nePERT R RTTRT "ERTZY

Because the left term is not noticeable dependent on theigraglerature T and on the

peak value y, is: T >>c;and c;< < H 0O , <& ®,dhugis:
a1+(1- y)¢, /R 4S cydd H' cy &4 1 0

"N TR RY RTTRT T "ERRTS

andtesting at different rates, in a sufficient small range of 1/T to neglect thiéedtences

of the peak values y at the different paekperatures, T gives:

2

d(in (7 aRT )): H-cy, H

d(1/ T) R R
For wood and woogroducts, the termy@ in this eqution will not have a negligiblent
fluence on the mean value H as is shown below.
In [12], thermogravimetric and differential scanning calorimetry measurements of wood
are given (see fig. 3.1). It can be seen ftomdata in fig. 3.1.b in nitgen that tere is an
endothermal melting peak possible melting and endotimeal decomposition of the csy
tallites, immediately followed by exotimaic deconposition that overlaps the melting. The
onset of the exothermal process may even start before endothernmg r@adtgiven by
curve k in (B) of fig. 3.1.b) and it is clear that both processes interact and are owegylappi
making it impossible to lot¢a the true peaks. The shoulders (peak | and IV) have no-mea
ing, not only beause the intensity is too small fonaticeable contribtion, but because
the basdine of the graph is wavy instead of horizontally, as in all other investigations in
the past. Thus only peak Il and Il give the occurringoginermic and exothearic rea-
tions, showing about the same activatemergy because of the ovepap. The found
enthalpies by the DS@ethod, H' ¢y (eq.(3.3.7))of the peaks, at about y = %2, are 43 to

(3.3.6)

(3.3.7)
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49 kcal/mol. The T@nethod, did mainly show the second process with lower values of 23
to 30 kcal/mol for the equivalt peaks. All these enthalpyluas are comparable with
those obtained by thermomechanical saeaments at lower tempaures of creepand
strength tests (see e.g. chapter 9.1 of [2]). The lowevdlGes of the enthalpy witles
spect to the second prosemeasured in [13], is also due to a too high heating rate with
respect to the longethy time of the processebhis second process was found13], by
more precise (nedynamic) isothermal thermgravimetric measurements in that tengper
ture region. TR measurements were done at different temperatures, in an inerhenviro
ment, using flowing nitrogen. Eq.(3.3.4) can be written for this case:
ad &S c,y® H-
- nipl oy 2 1
showing a stralghline plot of In(dy/dt) versus 1/T, at the same cosi@r: y, at the di
ferent temperatures (see fig. 3.2 ). Eq.(3.3.8) is always applied in literature with the a
sumption that £= cz = 0, and nowith the order n = 1, thus according to eq.(3.3.9).
e 8 1 % xS + - In(1- y)- H (3.3.9)
ge—o 8@ XIO@'OO y

(3.3.8)

what wrongly leds tochanging valugof H and n ané value of n, different from n £. In
table 3.1, the measured activatioergies according to eq.(3.3.9) for eacluezof y are
given with the theretical values of eq.(3.3.8) that is drawn through the points y ar@i4
0.8. In fig. 3.3 the measements are given. The good fit of the theory for cotton shows that
clearly one process istang. It can be seen by the kinked lines of pine craft of fig. 3.3a,
(even the line of 342C shows &ink) that 2 pocesses are ang. This also is showim

table 3.1, where the dominagiprocess, at the end of the @, shows a constant act
vation energy of 35.4 kcal/mol while the first process has the same properties dfor co
Further, it also follows from the apparemtive of the reaction order n, when onecgess is
assumed to act instead of two. For bleached pine kraft, n of eq.(3.3.9)sig @@ be:

n = 0.39 (0.95) at 268°C

n = 0.48 (0.84) at 285°C and

n = 0.70 (0.84) at 303°C,

= In(rate of weight loss, dy/dt in mg/min)

-4 5 y=8
-40f y=6
y.4
y=.2

-35¢

-3'0.

-350

1 1 1 1 i L i
20

1620 1634 1648 1662 1676 1690 1704 1M8
1000/7,°K™

fig. 3.2. Isothermal differential l@githmic plot of rate of weight loss dy/dt
in mg/min. vs inverse teperature for bleached pine kraft pulp [13]
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Table 3.1. Measured and theoretical activation energies for cotton linters pulp and
for bleached pine kraft.

Extent of the Activation energy in kealol

Reaction: cotton pine kraft
y measured theory measured
0.1 42.8 39.1 56.3
0.2 36.9 36.9 51.3
0.3 33.9 34.6 45.7
0.4 32.3 32.3 41.9
0.5 29.4 30.0 37.8
0.6 27.5 27.7 36.4
0.7 25.1 25.4 354 @
0.8 23.2 23.2 35.0 umean35.4
0.9 20.2 20.9 35.8 U

thus showing at leagivo processes to be present of order zero and of ordeflbae/d

ues inbrackets are for the plots atrs@rsions above 0.6, showing mainly the influence of
the second process thus mainly the influence of one process and thus showing the order
approaching one. For Cotton linters, the true order n = 1 was measured, showorgythat
one process is #ng.

fractional weight
remaining (I Y)

Pine kraft

In(time in minutes)

fractional weight 332°C
o8

remaining (1 ¢ Y) 3 Cotton pulp
N3 °C
ost
o4}
Q2
b - - -
5% In(time in minutes)

fig. 3.3. Meastments of a) bleached pine kraft and bit@o linter pulp [13].
The solution of the theoretical equation 83(8) may show a long delay time, before

the process becomes noticeable. It appears that for wood during this delay time an other
(first order) process is acting, (that produces the sites of the second process)ewitly
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constant reactant, arldus @n be regarded as a quasi zereoreaction. This systewas
confirmed by the thermeanechanical method in [2], to be present for creep anthda
processes woodat low temperatures.

3.4. Powder collapse method

Conclusions, i mwolittrematidurne,n dRonpterfatar es
ents of wood, as cellulose, lignin and hemicellulosesalap based on the investigations

by the powder collapse method, what thus need tosoastied.

A powder of the material is compressed under tzoridoad in a glass capillary and the
thermal softening point is determined s temperature at which the pdev collapses

into a solid plugThis temperature is dependent on the applied stress thus is not a real glass
transition temperaturd-urther, fiction of the povder particles is due to formation of a

new type of side bonds at the former broken bonds by grindintharabllapse is due to

this type of side bonds onlfy the isolation of the components of wood, the physical and
chemical propertiesiay change strongly. Cellulose is strongly degraded by the common
delignifying agents. However by nitration, with help of raegrading acids, undegraded
cellulose nitrate can be obtain®&ut, asmentioned before, this gel has, as other aadial
prodicts, totally different propertgefrom in situ wood cellulose.

Also lignin changes, not only physically, by isolation with solvents. For instance, Periodate
lignin (showing still a high softening temperature“T200 °C in thepowder collapse

test) has lost methoxyl groups. This change also depends on the type of solvent. For i
stance, liquid ammonigduces the plastization temptewra of isolated lignin from

Rel. plug (¢~ o T e,
length
05—

! ! ! { ] |
Plunger 2 -
velocity
mm/min -

o 18°
. ! ! | ! | Temperature °c
20 40 €0 80 100 120

fig. 3.4. Relative plug length and plunger velocity vs. terage for aspen
dioxane lignin (m.c. 7.2 %) in the powder collapse test [11].

+ 125 °C to- 30 °C and enters in the cellulose ctgflitesmodifying the lattice. Milled

wood lignin is chemically the closest to native ligninwéwer, themolecular weight is

only 11000 while native lignin has an undetermined higleoular weight.

The low value of the molecular weight of isolated lignin and hemicellulose has influence
on the softening temperature. Spruce dioxane lignins (obtaineidXard as solvent),
showing the lowest lignin softening temperatiike shows anricrease of this temperature
from Tg = 126 °C at a molecular weight of M = 4300 T, = 176 °C at amolecular

weight of M = 85000. From these powder collapse tests, the following tendency of the
influence of M onTg can be derived:
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Ts© 400 + 580 *®™  (with M < 190000 and’g in degree Kelvin), (3.4.1)

predicting a molecular weight of M = 190000 to be the value, where above the chain length
has no further influence onsTh the powder collapse tests, becauses 510 K = 240°C.

This follows from tests on dry@od powder, showing only one softening peak at about

220 to 240°C, the samas for lignin, the lignichemicelluloses complexas well as for
cellulose. This is confirmed by tests on pulps (cellulose), holocellulose (= cellulose + he
icellulose) and birctwood with renoved xylan (thus removed hemicelluloses), showing all
the same high value ofTn the dry stateThe reason of one and the samédor all can-
ponents and epolymers is certainly due to the collapse of the grain structure byeiue
failure and dgradation of the locally high loaded grain particles by splitting of the OH
sidebonds making plast&ion possible. The high weight loss (~ 35%) at the higintes
temperatures shows that decomposition is an accompanying phenomenon ofehisgof
This behaviorof the wood powder test agrees with the results discussed later concerning
the moduluf elasticity, the strengtlihermal expansion, and the specific heat, all indica
ing that dry wood does not show arnsdion up to the high tempature of degraation.

Because from wood extracted lignins and hemicelluloses are polymers with a low+molec
lar weight (m.w.), the moisture dependency of the softening temperature

Ts6 is comparabl e wi twhpolgrersgiving:her types of
Tg0° Tg-5500  (w < wg, for extracted lignins and hemicelluloses) (3.4.2)

Plunger
velocity

mm/min

| Temperature °c

fig. 3.5. Influence of increasing molecular weight on the saftprempegture
of spruce dioxane lignins [11].
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2.6 % WATER
velocity o -_’_’__/f\M
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fig. 3.6. Influence of moisture content on the softening temperature of
spruce tbxane lignins [11].

explaining the measured low transition temperatures of the components (fig.chBarg

to the general assumption in literature, the layers containing lignin and hemicelluloses
dondt bsehaviomccading to heterogeneous blendingshowing the same trains

tion temperatures for the mixtures as for the separate componentswiashise case, the
transition temperatures would be 20 and70°C for wet (resp. hemicellulosand lignin)

layers and would be 15 and 210°C for the dry state, ds measured for these comyp

nents by N. Takamuraccording to eq.(3.4.2) and simitarfig.(3.6). This is not ocatung

for wetintactwood powder and also dry wood only shows one transition temperature 220
%C, showing bonded chains to be present in the powder grains. The mixture thus behaves
homogeneously similar to solutions, @ftoysor copolymers, thus showing bonded

Rel. plug
length ol

o6

Plunger

velocity

mm/min o3
02
[-2]

T T 17T 177

Temperature °c

130 200 230

8\.

a0

fig. 3.7. Twin curves, of the two softening points in wet spruce wowadalpo
(Relative air humidity above 95%) of the nstmuctural filler nate-
rial (140°C) and of the wood epolymer(219°C) [11].

lignin and hemicellulose chains. The additional peak af®40 Fig. 3.70f wet spruce

powder at 23% m.c. (R.H. of the air above 95%) is due to the moisture dependence of the
actvation volume of loose filler material, thus due to thlatively short pgimers in the
powder. This infleence is confirmed by tests on wet kraft pulp (cellulose) powder that may
show a shilar just noticeable transition peak (around 2@pas for wood powder, when

there is a higher pentosan (a rairucturallinear hemicellulose) content. The powdelco
lapse tests show the importandele molecular weight and maise content on the o

tening temperaturé@ecause of the low molecular weight and frictional bondshénev-

ior is not comjarable with that of slid wood
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3.5. Dielectric properties

Dielectric dispersion, may sometimes giveoimhation on the mechanicaéhaviorof ma-
terials. For wood however, this is not the case. Takediricbehavior only may show
mechanical properties when the side boargsdipoles and dipole motion is possible by
rotation of side groups. 8eral polymers for instance of the methacrylate series do show
this by the same activation energies of ~ 24 kcal/mol, for dielectric relaxation and-for m
chancal relaxation. For woqdhis is not possible because in cellulose thegdblips are
symmetrical attached and are dielectric neutral. The straight celldlasesén wood pe-

vent nonsymmerical binding of water, contrary to the cellulose types of plants (cotton,
starch, etc.vhere this is possible. Lignin also is nelutracause of the random orietiba

of the OHgroups. Dielectric measurements show other processes than found byimechan
cal testing and the much lower activation energy indicates that it only givesation o

the special watestructures at the free surfaces of wood that still aasept in dry wood,

and determine only apparent dielectric properties of wood. The dielectric constaat of w
ter: e,, = 81, whilee of wood is aboute = 2. For the lightest wood species” 1 ande

of these species may approash= 81, when sarated with wier. As expected from the
depemlency of the activation energy on the moisture content, and as is measured-the log
rithmic blending rule applies for the influence of the moisture contegt émthe nei-
bourhood ofa peak in the dielectric loss tangent: tnigowever, the influence of water is
higher than according to this rule, showing an additionahaascebehavior e.g. at the

peak in fig. 2 of [16]. This resonance peak, arounHdis the same for wood, talose

and lignin (see fig 6.125 of [9]), and is also found in other materials as in papeband ru
bers and even in dielectric neutral materials, because ions at grain boundaries and pores
may provide with water molecules the sastreictures as found in wood. This peak pisa
pears when the water is removed and it alsapgears in pressed wood, (see fig. 6.123 of
[9]), because then the pores are closed by the pressing, reducing the free surfaces. Thus the
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fig. 3.8. Internal fretion.

peak around 10Hz has no influence on the mechanical properéind has nising todo

with a transformation, as is stated in [B8]din mentioned EC and RILEM pubétons,

but is simply the resonar peak at the eigen frequency of theewdipole resonator.

This mechaism thus only can be noticed at this higgguency of 10Hz. The high fe-

guencies also cause heating of the water blgcalar friction due to the oscillations what

is used for kiln drying of steam permeableses of wood.

The measured overall dielectric tan(fa), out
ferent in the different investigations. In the inveatiign of Brake and Schutye of oven
driedwoodat28C, see fig. 6.123 of [e&sihgfequencidsecr eas
between 10 and 10Hz is measured, while the investigations of Kroner (see the older
German publication of [9] of real dry wood)
near 5.10Hz. In fig. 2 of [16], there is aadrease unkil0® Hz and an increase above®10

Hz (indicating that this 6dryéd wood has a n
of wood follows from mechanical testing, stiag (as common for glasses) a, constant,

|l oss tangent, tanmpd&nt” g\rtch nl¢angenrtamedtures,an d e cr
the whole, techiial frequency range of about 2@o 10 Hz, (see fig. 3.8), depending on

the loading level. Only at very high loading levels, additional damage peaks may occur.

This constant value of tan(U) is expeéeained
guence of the special property of théivation volume. The same gerty explains the

time-stressand timetemperatur@quivalence of processes in wood.

4. Aging of wood
4.1. Measured aging

For the structural use of wood, transformagighay no role. At common temgagures,
loading levels and moisture contents themaisndication of any trarfisrmation and there
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thus also is no aging or change of crystdl, chemical changes, or change of concantr
tion of flow units (determining creep etc.) during very long times. Long term loaded wood
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fig. 4.1. Change of strength, dynamic Youngob
with time of old Japnese gpress wood [9]

(Hinoki) of old Japanes temples, did show an increase of strength during the first 400 years
and then a slow decrease during the next 1000 years, due to a process of increase of cry
tallinity and a slower process of decompositibealulose (see fig. 4.1.). This follows

from a piezoelectric shear modulus that shows the same behavior and frosmathdifX

fraction patterns being sharper for 350 years than for 8 years old wood and being diffuse
for 1400 years old wood, indicatingetlilecrease of cstallinity although the strength and
stiffness still was higher than for 8 years old wood. Aging of wood at normal conditions
and low stressabius is extremely slow and tisbanges at common times are not natice

ble. If not negleted, a ®t strength increase, at low or zero stresses, could be accounted for
of about 1 % in 10 years (during the first 400 years) at common temperatureatifireg

the common creep value of the activation volume parameter ofiti@sdkprocess of

n = 33).

4.2. Measured accelerated aging of wood

Accel erated fagingo t est?‘,asatmoistirectntentefmper at ur
about 5%) are.g.given in [14]. The rate of deterioration of wood, by isothermal heating

during some time, was measured bg tecrease of weight, thecdease of the modulus of

elasticity and the decrease of strength. The decrease of bonds is proportional to the weight

|l oss and the | oss of str eildtthusisfrépdiond®t r engt h
the residual bonds thus proportional to the residual weight w (or energy in the DSC

method) and thus to the concentration of thetead.

The strength reduction equation, eq.(3.3.2), thus becomes:
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d(NI'A) g _cl
- =N Alexpp — &X 4.1
ot pge & p _f (4.1)
withE6 = DEEandf I A =cN orin general:
dw a acW c,Wg
e nw. expge kTO enge_kT @ (4.2)

or given in the extent of the reaction: y -o(wv)/wo =17 W:

1 d - ac, (1 ,(1- y P
(dt y) dy —n(l y) expee kET enge (kT y)_ C ( Y)‘_g? (4.3)

Integration gives:

E;'(Ey(c /KT- ¢, /K + texd{ EYKY)
¢, /kT-c,/k

where R is the exponential integral and Eis the inverse of the exponential integral.

Eq.(4.4) only applies as long as the driving force is high. Integration of the general sinus

hyperbolicus equation that alsppies in the end state gives as solution a row of expone

tial integrals. However, for very low driving forces a simple approximate solution is poss

ble for fitting and parameter estimation.

Eq.(4.4) shows that damage increase at the start can be vdrgrsinaay suddenlyni

crease to failure at the end of the lifetime.

For comparison with test results and analysis in literature, an approximate solution of

eq.(4.3), called integral method, based on a constant driving force, has to be used. Thus:

~ dy acl(l y/2) c,(1- y/ 2)6 o

n-y=n expa—oe oo
where for each value of y, the mean driving forc€$ cym) and cx(171 yn).T are used,
according to the always so applied integral method of literature.
Integration of the Iast equation then gives:
(1 y/ 2) o(-yr 2)0

In(l y) tnexpeq(—o ”

with yy, = y/2, so that:
IN(In(L/(17 y) = In(t) + In(n-exp(S/k))- HIKT -c (17 y/2)/k + c1(17 y/2)IKT
This can be written:
Log(t) = log(In(1/(1i y))) T log(nN-exp(S/k) + (H/KT + ¢(171 y/2)/k +
-c(17 y/2)/kT)/2.3
The time t is in seconds, when written in daysthe egation becomes:
Log(ty) =- 4.9471 log(n-exp(S/k)) + log(In(1/(1y))) + 0.4343c(171 y/2)/k +
+ 0.4343(H/K ¢ (17 y/2))IT (4.5)
To fit this equation, two measured points y = 0.1 and y = 0.5 of [14] are used:
Log(ty) =- 4.941 9.8 + log(In(1/(%y))) + 2.02(1i y/2) +
+ 0.4343(16736 3074(1i y/2))IT or:
Log(ty) =- 14.74 + log(In(1/(1y))) + 2.02(1i y/2) + (5933 + 667.5 y)/T
=C + GCJT for each value of y.
From this fit follows: H/R = 1636 or: H = 216.736 = 33.5 kcal/mol.
The apparent values for y = 0.1 and 0.5 arét@74- 0.953.07) = 27.6 kcal/mol.
resp. 2(16.74- 0.753.07) = 28.8 kcal/mol.
For the loss of weight and reduction of the modulus of elasticity at y = 0.05 (the 95 % su
vival boundary), activation enthalpies of 28.9 kcal/mol resp. 29.3 kcal/mol follow from the
data. The measured values predi&% loss oftie weight at 36C after 20000 years. For a

y=1 (4.4)
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5% loss of the modulus, at 30, 32000 year is predicted 5% loss of the strength will
occur in 1300 years at 30C because of the low activation energy at the start. These-redu
tions, by heating alone as dng force, are orders lower than the reduction found in 4.1,
according to the descending branch of aging at normal climatic conditions with changing
temperatures and moisture contents and at the common lowlstrelssof old buildings.

In [10] results bdisothermal thermaravimetric mesurements are given, between 93.5

and 280 C with the Arrhenius plot, based on the first order reaction equation

dw/dt =- kW, that may apply outside the delay time. The gipkx shows an activation

Table 4.1. Mesured and theoretical activation energy parameters of wood

Ci C,
y measured theory measured theory
0.05 13.94 14.06 5925 5966
0.1 13.80 13.80---- 6000 6000---- chosen fit
0.2 13.75 13.57 6063 6067
0.3 13.55 13.47 6150 6134
0.4 13.45 13.42 6202 6200
0.5 13.39 13.39---- 6267 6267---- chosen fit
2,54
388 K
—~ 2%
-é 408 K
1,5
E
§ 428 K
£
5 0,5
448 K
0 f T 1
2 2,5 3

1000/T in 1000/K

fig. 4.2. Time to attain 95 % residual modulus of elasticity, dependingmpesture T (in
degrees Kelvin) of 6 spees of each 7 speciméid]. Similar perfect straight lines,
according to e@3.2), apply forthe residual weight and residual modulus qf-ru
ture.3.35 years at 10().

enthalpy of 28,3 kcal/mol. Reported for boards is 29.5 kcal/mol.
These results edirm the found values above of [14].

Also mentioned in [10] is the occurrence of a second process in thick specimens (see
fig. 4.3). This process with a higher activation energy than the first process occurs at lower
temperatures, showing that there lsgh internal stress. The same also was found in [2]

(pg. 79) for relaxation at 44 of wet wood and for the compression strength ([2], pg. 51)
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and for creep ([2], pg. 54) at room temperature. The same activation energy of about 41
kcal/mol was also fouhby the DS@method (see 3.3, lowest peak).

Determining for aging, at common temperatures, are the damage processes&ue to m
chanical loading and not the transformations due to the chemical forces. Based on the data
of the temples, mentioned above, th@®ifetime prediction thus should be based on 2
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fig. 4.3. Arrhenius plot of thermal degradation of yellow pine [10].

dominating processes due to loading. One process of a strength decrease and one process
of strength increase (by thacrease of crysilinity due to loading). The high glassy value

and the exact fit according to therAenius law, even at higher temperatures Cltb6175

% C) of the modulus of elasticity, shows the main constituents of wood to be, still then, in
the glassy state.

5. Transformations and decomposition of wood
5.1. Introduction

At a phase transformation, the free energies of 2 coexisting phases at thenrainsho
temperature are the same, but when the first derivatives of their frggesrare not the

same above and below the equilibrium temperature, there is a latent heat, or a diseontinu
ty of the enthalpy, the entropy and volume, what is known as a first order transformation.
When thes first derivatives are contious, but the second derivatives of theefenergies

are different below and above the transformation temperature, showing then thus-discont
nuities in the thermal expansion coefficient, the heat capacity (specific heat) anththe co
pressibility, the transformation is known as a second ordesftnamation (e.g. a glass

rubber transition).

5.2. First order transformations

Examples of first order transformations of wemdterialare the changes as:

melting, crystallization, depolymerization, degradation, dediyoh and some types of
plasticizeand hardening. Transformations of wood components are mentioned e.g. in [7],
but are based on highly degraded material. Wet hemicellulose is therefore suppoted to so
ten at about 58C and lignin at 128C and there also are other structural changessn th
temperature range. First, the structure of lignin is altered and then transverse shrinkage of
wood-components begins (at 7G) and next the lignin starts loosing weight. As a frans
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tion temperature of cellose 21C is given. The changes in the rar@® to 21PC are:

initial decompodgion of lignin and degradation of hemicellulose; hemicellulose starts to
decrease and cellulose begins to increase (by the reaction with hemicellulose); banded w
ter is freed (1468C) ; Li gnin A me Fhardem ragidwetighblesg af mesleet o r e
lulose and then of the lignin; cellulose dehydrates. Abové@16ellulose crystallinity
decreases and recovers; cellulose decomposition and weight loss starts alf@/&@80
mation of Carbohydrates); crystalline oriderchanges (at about 236) crystallites start

to melt also above 28IT; dissociation starts above 58D and dominates above 780;
hemicellulose completely degrades; wood is caidem.

The mentioned transformation temperatures have no generalngédemause in [12]

much higher temperatures are given (see fig. ldlicating higher molecular weights of

the sanple maerial.

Wood does not follow these transformations of the degraded compoAsisisown b-

fore, wood is not a heterogeneous cosifion and will not show tresfiormations of the
components, but is a homogeneous composite and shows onesdligeentransition point
(see e.g. fig. 5.1) of the gulymer depending on the composition. It can be seen in fig.
5.1, that the bend down of lineof wood, theonset of the@ransition pealof wood,

(that is proportional to the slope of the line), is not influenced by the onset andrtransfo
mation of the components. The composite wood shows a higher crystalline melting point
thanis mentioned for theomponentsThe dynamic DTA and DSC tests, [12], did show

the endothermic mehg peak to be at about 380, a higher crystalline melting point than

1. wood

2. holocellulose

3. celulose @ -cell. C)

4. hemicellulosedktracted with 10 % NaOH)
5. lignin (dioxane lignin)

Loss

200 300 400 500

fig. 5.1. TG curve of wood and wood components [12].

is mentioned for the componentgcurring at te high temperatures where also dgpol

merization and degradation occurs (failure of the chain oxygkades).

Decomposition thus i andet as smoigsechbetiegogd f mel t
regarded as a process of endothermic deositipn.

It can be concluded that first order like transformations of wood only occur at highrtempe

atures and have a not noticeabléueance on time dependent behanab common tempe

atures (as also follows from 4).
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5.3 Second order transformations

Secondorde transformations, that may show at
creaseo of the t he,thmiehtcapacityand the qumssibility,e f f i c i
should e.g. be detectable for wood by a fall down of the moddleiagicity. For a real
glassrubber transition e stiffness (or rigidity) dinmishes more than 3 orders (and the
strengths more than 2 orders). However wood, as highly orientedliotces, filled and
crystalline composite can be expected to show a leather transition andato edmstic
(potentiatelastic, not rubbeelastic) and only may show a texfion of the stiffness of less
thanone order in the stiffidection.

5.3.1. Change of the thermal expansion coefficient

The thermal expansion coefficieatcan only be measured for dry wood, because else
temperature changes cause changes of m.c. and cause higher deformations than by thermal
expansion. The measurements on dry wood of Schaffer, betWeend®7d C, did not

show a sudden increase bétthermal expa@sion coeficient. Dry wood thus does not show

a transformation up to the highest tengberes of degadation.

5.3.2. Change of the heat capacity

The heat capacity of wood, or specific heat (as ratio of the capacity to the capacitgrof wat
at 15° C), is known e.g. between’@nd 110 C [9]. It is independent of the species and
specific gravity. It slightly increases with temperature and dperidency of the moisture
content follows the additive rule of the specific heats ¢ of therwatdgent and of dry

wood content:

Cn=W-Cy+ (1-W)'Co=W+ (1-w)-0.324 =0.324 + 0.676V = (W + 0.324)/(1 +Wo)
whereWw is the moisture content based on the wet weightvandn theovendry weight;

Co is the specific heat of dry wood angl< 1, is the specific heat of water. There thus also
i's no indicat i on(orqguick change) irithis teparature range (nor tug o0
to water). The usually assumed gkassisition ofwet wood around 3tto 8@ C thus is not
indicated Around this tenperature, a common second relaxation process may bea@me n
ticeable, after a long delay time, at sufficient high stresses, by thetiess equiaence,

(see fig. 4.3 and [2] pg. 79). Tlggass state, determining this mechanism, igicoed by

the perfect Arrhenius plot of the damping peaks (or loss modulus pedhksjraadynam-
cally loading (comprising the whole moisture content range).

For a glass transition, a Wklype equation shodlapply instead of the Arrhenius egu

tion. Wet wood thus also does not show a transformation (belofC)10

5.3.3. Change of the strength and modulus of elasticity

According to the constant temperature dependency of the modulus of elasticity, dry wood
(m.c. = 0) does not show any transformation up to the highest temperatures whera-degrad
tion occurs. The same follows from the constant temperature dependency of the strength
for the ultimate load besng bonds. The compression strength at 0 % m.c. isureshge-
tweeni 180°to + 280° C to be linearly depetent on the temperature. This linear d

crease with the temperature of the strength is due to the positive constant entropy term of
the activation energy what is common for glalssizavior The same apgas for the bed-

ing strength, measured betweeh80° and + 130 C, and for the tensile strength, reea

ured ketween + 20 and 28(° C. One investigation (of Schaffer), did show a kink in the
straight lines for the modulus of elasticity, the compressiod the tensile strengths

around + 2008 C, showing the influence of damage by the initial quick m.c. change. The
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common decrease of tlserength with the moisture ctamt is a prperty of the activation
volume. This effect is recoverable, as for most moesdependent properties (at sufficient
low stresses).

The moisture content has no influence on the tensile strength at low temperat86es (

to ~ + 20° C). As discussed in [2] pg. 51, there is a change of the dominating strength d
termining proces afi 8° C, where below the detmining process shows an activation

c
3 u Gu
o
25| u20 OU?O
’ > ESP 2 r 0% M.C.
2 r Comben 15 F Sulzberger, Kollmann a.o.
15 F 1
Kollmann a.o.
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fig. 5.2. Compressive strength // [12] of wood in the whole temperature range
according to theory and measurement (see [2] pg. 52).

volume that is not dependent on the c . for tengiiopNofrcampisol | ows
sion, explaining the curved decrease of the compression strength at a m.c. aboveifiber sat

ration (given e.g. betweén100° and + 20° C in fig. 4.5.3, and between 2@o 100° C in

fig.45.10f[3 ), and shows no fistepd change of the
temperature dependency in this temperature range thus shows no transformation. The same
follows from the shear strength, meastier wet wood e.g. between 2@nd 70° C,

and fromthe strengths perpendicularthe grain measured up to 106. The modulus of

elasticity also is measured, in the tenapere range of 150 to + 280 C, to be linearly

dependent on the temperature for dry wood (m.c. ~ 2 %).

s0d o,
80 |
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tendency of lines v 0%
60 |- for calculation of — ° v
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fig. 5.3. Compressiostrength and activation volume
Because the modulus of elasticity is proportional to the activatieryg (by the form of

the energy barrier), the linear temperature dependence is caused by the constant positive
entropy term (see [2] pg. 33). pralicts a similar m.c. depdency as for the strength
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(see 5.3.3 and [2]).

Thus, the strength and modul us nwstfanceslaast i ci

transformation of load bearing bonds in the whole temperature and moisture content ranges
of un-degraded wood.

5.3.4. Changing loading, moisture content and temperature

Softeningof wood is possible at high temperatures and moisture contents (m.c.) due to
high loading. The influereeof m.c. is known from manufaeing densified wood. Pressing
wood of 26 % m.c. at 26C is as easy as pressing wood of 6 % m.c. al G®By the
time-stressequivdence, the softening temperature of wood is also stroeglyced by

high loading.

A type of a leathelike transformation of wet wood is possible bgy&ling load or (see

[2]) by a cycling m.c. change. This is not a real glaassition that only eépbends on its
transition temperature, but may occur at any temperature apgesdknt on the loading
level that should be above the letegm strength. Té transformation is not possible for
tension in grain direction and at low moisture contents, but is measured in compression
(Y.M Ivanov) and in torsion (Becker and Noack) and the other loading cases [2].
Repeated compressional loading of small clear cesgion specimens (1x1x2 tnat a
stress level above the lotgrm strength did show, besides the vistastic strain, a strong
increase of the elastic strain. Thus, a strong decrease of the modulus of elasticity. This
elastic strain may become of higherder with respect to the initial strain, when pure-ce
tral loading of the specimen remains possible in the test. If this is no longer posasible, i
stantaneous compaenal failure occurs. The applied stress is thuigife load of the
repeated cdral loading. Thebehavioris according t@ damage equation or to a stural
change equation like eq.(6.5.23) of [2], and there is a delay time and an exponential i
crease of the elastic and viscoelastic strain. VVeastic strain is caused by side bond
breaking and bond reformation in a shifted position. The meebharpiive effect is a &

cial form of this mechanism where there is aratige shrinking and swelling with slip in
adjacent layers by the moisture content changes, what is fpllgieed in [2 chapter 7 for
all histories of high moisture content changes. At high stressesthisris an additional

— Deformation
2.5 | strain in % increase factor

- fracture
/ ___ Drying cycle
2.0 ,
 ___ Wetting cycle f

1.5

—

1.0 - p f ff r

L f"fl‘
0.5 m L ’—‘rf‘f\ creep at 93 % R.H.
0 a—

20 40 60 80 100

120 140 0 5 10 15 20 25 30
time in min. time in days

fig. 5.4. High elastic strain and mechanosorptive strain {gfg][17]-right)
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effectof high viscoeelagicity and of diminished bond refomttion causing theedrease of
the modulus of eklicity due to damage by fatigue.

An other way to obtain a high elastic strain is given in chapter 8 of [2]. Creep arat relax
tion compression tests on small clear specimens at a high stress level, witthsmgithg
moisture contents, did show, in ttelay time before the high etasstate in compression,

a strong increase of the activation volume and thus a much higher compressional creep and
already a high elastic state for lggmg movement of the comm®on specimen. This
shows that side bond breaking starts only in certain planes and changingertmstent
tests should be dorie combined bending and compression for parameter estimation.
For wood, the high elastic state is the result of a strengtthanism, decreasing the side
bonds and it is not a glass transformatatra specific temperaturalthough the defe
mation is pdial recowerable. The real glass tranait is discussed iB(2010) Section B.3.

6. Conclusions

Conclusions about phatansformations discussed in chapter 2, are given in 2.9.

Based on the theory of molecular kinetics, a discussion and theoretical derivatiom-and co
rection is given in 2 of the old qualitative linear rheological models. As a consequence,
new theory in 2 isderived aboutnucleation and heterogeneous nucleation (2.5), with the
right ATammann Hesseo (2.6), and other empir
diffusion equation of transfmations (2.3); the reaction order (2.4); the activation volume
paameders (2.5); the power law (2.5); and the empirical power law rate equations (2.8).

- Conclusions about transformations in wood, discussed in 3 to 5, are as follows:

- The activation enthalpy, found by thermogravimetry, is only indicative becau$e of: t

gas lost; the combustion of these gassegyahting also the reaction withthe speie

men; the successive and simultaneous reactions, giving overlapping peaks; the assumed
wrong equation of only one process and wrong reaction order (different fremaorel);

the structural transitions in wood that only are possible after the previous, or at the same
time acting decomposition reactions; the strong influence of the molecular weight and d
mensions of the sample and of thethrgprate; the neglect of ttetrong influence or the
extend of the reaction y on the enthalpy H, so thatch is measured and reported to be

H; the many influences causing peaks that are chamtict@f the test and sample holder
assembly and laboratory and not of the sample.

A thermemechaical verification of the foud enthalpies thus is alwaysaassary.

- Thermagravimetic and dfferential scanning calorimetricneasurements of wood in
nitrogen show that there is a peak, at about’380of endothermic melting and degead

tion of the crystallites and at the same time a peakahexrmic decorposition and d-
polymerization that interacts and overlaps the melting. Pperant activation enthalpies

of both peaks are 43 to 49 kcal/mol, according to the-B@@od. From the T@&nethod,

lower values from 23 to 30 kcal/mol for the equivalent peaks are found, showing, that there
is a process of weight loss and a process of bond breaking without weight loss.

- Isothermal TG measurements just below 380 did show that two processas acting,

and by the changing driving force, due to the extent of the reaction, of one of thesproces
es, an apparent changing total activation energy between 35.4 and 56.3 kcal/mol was
found, see table 3.1. The lower value agrees with the value fostitl latver tempea-

tures of the accelerated aging process of 4.2. The lower enthalpy values of 23 to 30
kcal/mol, of the dynamic TG method with respect to 35 to 56 kcal/mol ofdtiesrsnal

TG method is also due to a too high heating rate with respéuot fong delay time of the
processes.

- The found enthalpy values from thermogravimetry agree with those obtained by-thermo
mechanical methods of creep and strength as given in [2].
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- It can be concluded that first order transformations of wood onlyr@tchigh temper-

tures and have a not noticeable influence on time depebeéleatiorat common temper

tures as also follows from chapter 4.

- The powder collapse tests show the important influence of the molecular weight and
moisture content on the sefting temperature. Because of the low molecular weight of the
degraded sample material and tither type of bonds, the behav®not comparable with

that of wood.

- It is clearly shown that wood is not a heterogeneougosition but a cgpolymer, (a
homogeneous composite), and thus will not show separate transition peaks of the different
components, but one intermediate transition point. Thus, cellulvsaicelluloseand
ligninnrpeaks, &stohwoodonoét e

- Thus, peaks due to previous testimgiter movement; temperature history and damage

etc.; should not be associated with transitions of components, as is done.

- Dielectric dispersion gives no information on the mechariehhviorof wood because

wood is dielectric neutral. The dielectrireasurements only give information on the-sp

cial loose watestructures at the free surfaces of pores etc. in wood, as also follows from
the low activation energies.

- The internal friction thus does not show the mp#aked dielectribehavioro f tnll-e
ti-t ransiti ons mod el &ofintdrnaltfrictior) fellovingefrarh mechan g ht v a
cal testing, shows a constant loss tangentdiamfid constant logarithmic decrement

(¥ p-tan(d)), at common temperatures, in the whole, technical frequency range of about
10 °to 10" % (depending on the loading level). This constant value ofl}as(explained

by the theorysee [2], pg. 96 to 100), as a consequence of a property of the activdtion vo
ume. The same property alsgains the tine-stress equivalence.

- Measured aging on wood of temples, loaded between 400 to 1300 years, did sigew a ne
ligible decrease of strgth and stiffness during 1300 years, despite of loading and climate
changes. Accelerated fagingo tests at high
because there was no mechanical loading. Also for this structural change process; the time
stressquivalence applies.

- For the structural use of wood, transformations play no role. At commoetatures,

loading levels and moisture contents there is no action of any tnaradéfon and there thus

also is no aging effect or change of crystallindiyemical changes, or change of conce

tration of flow units (determining creep). There also is no indication of second order tran
formationsbecause there is no sudden deon a temperature plot of: the thermal expa

sion coefficient; the heat pacity; the strength and the rdalus of elasticity. The only pr

cess that matters is the damage process at high loading. Stress is thievioiglyaice

then, because tlehemical driving forces are negligible.

- Softening of wood is possible at higher paratues and high moisture ctamts, by high
changing loading or by changing moisture content at sufficient higinpaPreliminary

tests and parameter estimations are given in [2]. More investigations are necessary to o
tain the parameters of this special im@oesorptive éfect. Becaus unproteted wood in
buildings undergoes the maximal moisture cohtdange during the year, thechane

sorptive effect, together with the softening effect at higher loading and by longyterm c

cling, is determining for creegnd safety and is the only effect that needs to be investiga

ed futher.

- Conclusions about the new rubber theory are given in appendix

- Conclusions aboutew theory of glass transition and annealing are giv&eationab.3.

- All aspects oftrength and time dependdighaviorof materials are fully g¥ained by

the acting physical and chemical processes, thus by statistical mechanics and reaction k
netics. The correlation of the theory with the measurements is about one, for the processes
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in each specimen (each given structure). It thus is a deception to use the old qualitative
linear rheological modaeidf liquids and soft solids, which even dot apply for thessoft
materials and only locally and meaninglessly may fit some data, andthosable to
predictbehavior
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1. Introduction

Althoughlinear visc@lasticity does not exi$br structural materials, there is, due to the
standard computer applications, still a fall back to models based onbeteaior and on
linear spectra of relaxation times based on the flexible chain theory. These modeis are e
trapolated tdhe totally different, no#inear cases of rubbers, glasses and crystalline-mat
rials and even are supposed to be able to describe traasfums. Even the free chain
model of Zimm [16] is proposed as such for the glassy and crystalline material weod, al
houghit only may apply for flow ofvery dilute solutions. Wood remains glassy and does
not show a ral glass transition or real ntielg bdow its high temperatures of decompos
tion. A real glass transition temgaure of wood thus does not exist. For wood, the process
of side bond reduction, causing softening, is onlgsiiade at combined high temperatures
high moisture contentsandhigh loading close to the level of damage and decontpms

That spectra of relaxation times cannot exist is shown before in publications and at
COST-workshops. Besides the theoretical impossibility of such an existence, alsmthe si
ple test of e.g. zero r@tation, after a relaxation test, shows that only onelinear ce-
formation kinetics process is acting within a very wide ton&equencyange. Zeroe-
laxation occurs when the applied strain and stress are lowered to such a level that the inte
nal stress on thenobilesites is zeo. This proves the impossiltifiof the existence of a
spectrum [2] that predicts that there always is relaxation at any strain that is applied. This
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further shows that none of the other methods (chain models, power laws| generons,
etc.), based, or implicitly based, on the existence of spectra, is able to explain or predict
anybehaviorand thus is nothing morbdn an arbitrary, only partialpplicable fitting po-
cedure.

For valid conclusions on wodgkhavior it is necessary to show when, and for what
material, there is any possibility of assumptions dafdiity or chainlike behaviorand thus
any applicability of the phenomenological rubber theory. This is done herelpla si
derivation of this "theory" to showsitbasic suppositions and the consequencEaulBe
this analysis leads to a rejection of this "theory”, the real explanation of rodlteviorby
the exact physical theory, (statistical mechanicsliamtianalysis ofequilibrium theory [2]
of deformatim kinetics),alsohas to baliscussedThis general theory is shown, in many
publications, to explain fully all aspects of time dependssitaviorwithout the need of the
invalid extrapolation of the free chain model of a very dilute solution to debkerstand
without the need of an incorrect and inconsistent phenomenological modelezse of
free vdume as cause ofjlass transition [3], [2]etc

From the given derivations it is shown that the explanation of rubbevibelhy de-
formation kineticgemoves the existing serious contradictions of the, therefore rejectable,
chain models. Of course, these models, based on theitvebgisolated flexible ma-
cules, only were supposed to apply for liglikee behaviorin the terminal zone of very
dilute uncross linked polymers and can not apply for undiluted material in the, glags
the plateau zone, nor for crelgsked networks and thus certainly not for structural niater
als like wood.

2. Discussion of the classical rubber theory
2.1. Basis hypothesis of the theory (Rouse; Zimm; etc.)

The Arubberodo theory is based on the Brownian
temperatures above glass transition, thus deals with very dilute solutions where a separated
long molecule is surrounded bglvent. The driving force of these Brownian motions is
the thermal energy that is regarded to be opposed by viscous forces of the hydrodynamic
resistance of the solvent. At dynamic loading, the force in phase of the Browstan di
placements causes energgragge and in phase with the velocity causes energy dissipation.
At very high frequencies (mg orders above the measuring frequency of the rubber state),
there will mainly be bond stretching or elagighavior(glassy rigidity), while for low fe-
quencieghere is time for chain movement within a period showing the mentioned strain
and velocity in phase with the stress (in ruldtetnavioy.

The theory however does not deal with fiebaviorat higher frequencies and short
range relationships and the predin of this theory of infinite rigidity and infinite loss at
infinite high frequencies is invalid. The thgas limited to the low frequety chain stas-
tics that any point on the chain backbone separated by 50 or more chain atomsewill be r
lated to eaclother in space according to a Gaussianithstion of vectors (distancea
cording to a random walk). The remteansquare ditance, s, between 2 points separated
by g monomeric units (g > 50 chain atoms) is:
s= a.‘/a :
where "a" is abut the monomer distance. Distortion of these 2 distance points by a shear
stress in the solvent will be opposed by the restoring force due to thsatfback to this
configuration by the Brownian motion resulting to a springstant of: 3kT/qg (the
"entropy spring” of a chain segment in liquids and soft solids), where 3KT is the mean
t her mal energy (T = absolute tempersatur e; k
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sumed, as model, that the friction along the clsaimbe concdrated on thesdistance
points (called segment junctions) in order that only theamewts of these points have to
be regardedt thus is assumed that there is no hydrodynamic interafiicsmaller
motions between the junctions (limiting the model to low frequencié® motions of all

fig. 2.1. characteristic modes of motion of a flexible chainemde

segment junctions can be expanded into modes (like a vibrating string) and each mode co
responds to a disete contribution to the relaxation spectrum H, frohich all exper-

mental visceelastic functions can be derived, leading, according to Rouse, to:
N'(¢N/ 5)

H=mkT & t (1)

p=1 P
predicting a line spectrum, whereis a relaxation time; N is the number of ¢tions of
each molecule of g monomers, and "m" is the number of polymecuies per cc, or,
with r = polymer density; M = molecular weightyM  Avogadr o0 SNofMu mber :
To keep the series in eq.(@nvergentp must be smaller than about p < N/5.
Then, using this bound, the term:%pw/2(N + 1)) in the Rouse model can be approx
mated by: sif(pp/2(N + 1)) ~ (pp/2NY and t, becomes:
t, =a’q’N*y,/ (6p2p2kT) (2)
where,V, is the friction coefficient per monomer. Thus per junction the frictionvjs q
(where the friction is assumed to be concentrated on the junctions by the Rouse model).
The magnitudes of "q", "a" and "N" need not to be knownwéleer: Nq = Z,
the degree of polymerization of the polymer, what is known and q (> ~ SO)nilete the
high-frequency limit of application of the random walk statistics of the model.
Because the influence of the short relaxation times is ignored in the model, the dpplicabi

ity and verification of the theory only is possible bmhaviorafter longettimes (oratlow-
er frequencies).

2.2. Relaxation spectra

Linear visceelasticbehavioralways can be described by mechanical moaelslving
Hookean springs and Newtonian dashpots. For a single linearelastio Maxwell ele-
ment the shear rigidityis

G(t) = Gexp(t/t ) (3)
giving for n parallel elements:
G(t)= ié:ilGiexp(- t/t,) (4)

Increasing the number without limit, a continuous spectrum results with thiesitinal
contribution Fdt or Hd(In ) with H = it on the In{ ) scale, giving:

G(t)=G, + AiH.exp (- t/ t }d(n(t)) (5)
where G = 0, for this case of uncro$isked polymers.
Fordynamic loading the complex stres¢ r ai n rati o: G* = GO6 + i Gi
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G'(W) = & GWA2/ (1+wt?) (6)
i=1

and forG":

G'(W) =& Gwt/ (L+Wi?) (7)
i=1

The dissipative effects of alternatingests also can be described by the ratio of stress in

phase with the strain ratig(t) / dt = iw g-exp(iwt), divided by the strain:
ot) =gy exp(imt) or: h* =G*/iw=h'- ih", whereh'=G"/w and h"= G/ w.

Becausd , in eq.(3), (4), (6) and (7)is; =h,/G,, n6 may appr oatath t he st
flow viscosity n because according to eq.(Hj= (G"/ W)W_ ,=aGt;=ah;=h
hw)= & h / (L+w??) (8)
i=1
This of course only applies for polymers showing a stesale flow viscosity.
In the same way as done for G(t) is for an infinitexiviall model:
G =G, + A(HWt?/ (1+wt?)}d(in(t)) ()
G"= AHwt/ (1+wt?)}d(in(t)) (10)
b= a(Ht/ (1+w’t?))d(n()) (11)
The steadyflow viscosity for an uncrosknked polymer follows from this e@tion by: w
=0 or
h= AHt-d(n(t)) (12)
Substitution of eq.(1) in (12) and using eq.(2) gives:
—_ 2.2
t,=6(h- hy)/ (p"p"mKT) (13)
whereh is the total viscosity antis is the viscosity of the sobnt and because m is
known from the molecular weight, time dependent properties are known from easily mea
urable quantities.
2.3. Relaxation spectrum of Rouse
Inserting eq.(1) in eq.(5), (6) and (8) gives:
N/ 5
G(t)=mkT a exp(- t/ t) (14)
p=l

N/5
G'(w) = mkT - ?ﬂwztf,/ (1+wt?) (15)

N/ 5
h(w)=mkT-a t / (1+vv2t,2)) (16)

p=1
For low frequencies(w 1)* << 1, wherefore the theoryplies, eq.(15) becomes:
G'W)/w =kTgd >t mkTg (1506)
and eq.(16):
G'W)/w="hmkTgq , kT (16606)
giving finite values of cand ¢ by the convergent series, e.g. by using eq.(2), whatsis po
sible by the sufficient small upper value of p < N/5.
From eq. (156) and €. (166) follows in this
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Log( Go9 2logwC (15060)

and: Log( G&& bogw= C (1p066
and the derivation shows that always, for all unctog®d polymers, the slope of theglo
arithmicpl ot of GO6 is 2 and is 1 for the | oss

As can be seen in fig. 2.6.1 and 2.6.2, this neveliesp he reason is that congarg of
the series only may apply at a steep descent, thus in the terminal zone for-limcedss
polymers by the cutff to N/5 used irt , and by the limiting logest relaxation time due to
the limiting value o0 .

The limiting forms at moderately short times or higher frequencies depend moded
According to eq.(2)t , has, according to Rouse, the form gf:= ci/p?, giving for

eq.(15), with x = p(/wc3 X
G'w) =mkTH{1/@ # / *§) dp KT/ gcv( /@ %pdx mkEg (150660)
b

leading to a slope of 1/2 at a double-fagt (see fig. 2.3).
In general, with the arbitrary power laty =, /p?, is found in the same way:

G'=mkTc,( W2.

This gives witha = 1.5 the Zimm value of the slope, (see 2.4).

Except for the 3 longest relaxation gésof the line spectrum eq.(1), being too far apart,
the other contributions to the spectrum are closely enough spaqaaramianate this as a
continuous spectrum leading to:

H =(agNm/ 2p).(@z kT)"*t V2 (17)
or, in terms of steadflow viscosity:
H:(ﬁ/z gy-(ka( h )R 2 (18)

where N, as too high value, is inserted as upper value of p in stead of N/5. This result thus
is not right and because of the limitation of N/5 and the applicability for,_;, (corre-
sponding to H > 1.5mKkT), eq.(17) and (18) only may apply over about 3 decades of time
scale (or 1.5 decades of\lues), as confirmed by the nsaeements, what is far too less

for an explanation of the totaEhavior

2.4. Hydrodynamic interaction, or extension of Zimm

Zimm introduced hydrodynamic interaction between the movingnsoilecules based on
the calculation of steadjow viscosity of dilute solutions. This leads to a different egpre
sion fort | than giverby eq.(1)that however can be written dogous to eq.(13):

t, =6(h- h)/ (p* ZmkT) (19)
wherel | are numeric values whose first few values (p = 1, 2, 3, 4) are:
1.2,2.1, 2.9, 3.67, (in stead of the 1, 24 3ralues in the Rouse equation) leading to

somewhat smaller values by eq.(19) than given by eq.(13) and leadingrionaicos
spectrum of:

H =(@°gNm/ 5).(kT)">hZ%.t ?° (20)
showing a slope df 2/3 on logarithmic scales.

Alternativdy, eq.(19) can be given, comparable to eq.(13), like:

t,=0.76-(h- h)/ (P*p*mkT) (196 )
wherea v 1.6 for the first 4 terms, descendingae 1.5 for high values of p.

Although the Zinm theory should provide a better calculation (at high molecular weights)
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of the intrinsic viscosity= the limiting value of the viscosity when the polymer conoce
tration approaches zergjsco-elastic data of e.qg. dilute saloms of polystyrene etc., in
the range and conditions where the theory ap
behavioraccording to the Zimm theory but do showehaviorclose to the Rouse eq.(18)
despite the neglect of hydrodynamic interacaowl internal viscosity (= intrantecular
steiic effects) in this Rouse edii@n. The explanation of this apparent contradictionvs gi
en by the deformation kinetics approach that is able to describe thelvethaleorpre-
cisely. As will be shown in 3.3the determining deformation kinetics equation of tise vi
co-elasticbehaviorat longer times can be expanded into awdvichis identical to the
row of the Rouse equation. Thus, the Rouse $pectrum represents oneapknonlinear
processThere thuss no restriction of an application to only dilute solutions, as isdhe b
sis of the chain models. This single process explains why at zero relaxation, aftea-a relax
tion test, the spectrum is not present. Becauséthep e c t r u m"asexpahdgd e xi st s
terms of one process, it does not exist when this single process is not acting (as in the zero
relaxation test, see 3.4).

Thus diffusion of activated segments is the basic mechanism that explaiehéweor
and the chain model should be rejected becawsedtly only should apply for sepated
chains in dilute solutions, eerding to the assumed basicahanism, while it shows a
better experimental agreement for undiluted polymers outside the basic assumptions of this
chain model.
The explanation of thRouse equation as an expansion of onelim&ar deformation ik
netics process also explains why this line spectrum (that seems physicabable, but
exists as terms of the row expansion of the exact equation) gives better results thhan a co
tinuous spettum (that does notxést). Further, it explains why the theory also can pe a
plied to undiluted polymerssing only one friction coefficient for all types of coordinated
motions. These otions, represented by the separate terms, are in fact the expandsd
of one process with one relaxation time, thus one friction coefficient.
In the same way, the slip of the entanglement couplings, showing a second bond breaking
deformation kinetics process, can bpnesented by a group of modesexpanded terms)
with another friction coefficient as is applied in the chain models by using a second ladder
network behind the first.

The experimental determination of H for undiluted polymers shows a slope between
i 1/2 to oveli 2/3. However, the slope is mostly closei 1/2 in the time scale where the
theory should be applicable (the terminal zone at stladyviscosity) and thus is not
i 2/3 as predicted by Zimm. The steeper slope, ocguat shorter timegertanly can not
be explained by the Zimm theorydaeiseh,, the solvent viscosity in a dilute saibn,
now, by the absence of solvent, would presumably represent an effective locatywfaco
smaller than the real macroscopic viscosity.

In the range where the slope of thevauof log(G) against log) is 2/3, applies:
log(G ) =log(G,) + 0.67log{w/w,).
BecauseG'° (p/ 2)-dG'/d(log(w)), and therefore:

d(! og( Gw)) 9 (2/p)tdn(d)as((2/ p)tan(d) °© 2/3, ortan(d) ° 1 and

G6-Go6 0O .

This last relation may apply near the midpoint of gkagasition and explains why the

slope heras about 2/3 and not at the terminal zone as predicted by the-Aiodel. The

Zimm model further only could be right for very dilutegans approaching the limiting

value of zero concentrationh@& different measured slopgsow in reality that still & oth-

er additional process is acting. This again shows that an explanation or a description cannot
follow from chain models or arbitrarily power law models.
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2.5. Ladder networks

In dilute solutions, polymer molecules can be represented by springspwitly constant
3kT/(g&)) moving in a viscous medium (with friction coefficieny). This model is anat
gous to the ladder network in electrical network theory. When the lumped springs and
dashpots are uniformly distributed alaihg length, the mechanical model becomestexac
ly analogous to an electrical model of an inductive transmission line, for which the

- ——H [/-'::/‘/‘l‘l'l‘/‘/\l\/Kl‘;l‘l\l‘l'l\/'/‘/-/\I\-llgl‘/\/\/\/\l‘/‘/\11;1::‘/'/‘/‘/‘/\/‘/'/‘[I;/:‘I]\I\/‘/\I‘I'N\IE -

e e AR AR AN T

Fig. 2.5.1. Ladder networks of Blizard (above) and Marvin (below).

frequency dependence of the impedance faptex rebxation modulus G*) is well known
giving for an undiluted polymer with molecular weight M:

G*= G+iG"= (C,/ M)((ic,Mw)"? coth(iC,M°w)"” - 1) (21)
At high frequencies, eq.(21) gives the limiting value:

G'=G"=C,(Cw/ 2)"? (22)
identical with the Rouse theory and at low frequencies the limiting values are:
G'=C,C:M*w*/ 45 (23)
G'=C,C,Mw/ 3 (24)

also according to the Rouse theory, whén=r RT/ 2 andC, = a’z,/ (6M2KT), where

r = polymer density, R = gas constaniy MM/Z = monomeric molecular weight.

Using additional springs below the dashpots (see fig. 2.5.1), Marvin obtaihghtky s

different G* leading to the same eq.(22) at high frequencies and slightly different values at
low frequencies. However there is an abrupt change from eq.(22) to the propertiegs of a si
gle Maxwell element as limiting value of the glass value ofl@& spectrum thus is &-tr
angle,giving only a qualitative description of tihehaviomeglecting also the flat gisau

at small timesAs to be expected for this ligulike behavior there hardly is an infence

of side group packowhich differs greatlypetweertestedethyl anddodecyl ater.

A thorough study in the past of ladder netksowith both lumped and distrited @&-
rameters, has shown that a continuous dynamic modulus function as eq.(21) corresponds to
a discontinuous relaxation spectrum witbatlete lines, so that the series expressions
eg.(6) to (8) or (14) to (16) are equivalent to eq.(21). This confirms again the explanation
of thebehavioraccording to the Rouse modeiitg a row expansion of the deformation
Kinetics equatiomf one proces

2.6. Modified spectra for cross-linked networks

It should be emphasized that the theory for isolated flexible molecules isppotsed to

apply for viscelasticbehaviorin the glassy, or in the plateau zones, nor for elioked

networks and is rtable to describe thisehavior This of course is evident because short
chain units cannot be randomly coiled and have the Gaussian distribution of configurations
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and thus cannot behave as entropy springs. This also follows from fig. 2.6.1, where the

starage modulus is given of all typical polymeric systems, above glass transition (except

curve V), with the acrosslinked pdymers on the left and the crelisked on the right.

The glassy state, curve IV and the crlisked polymers, curve V, VI and Vignd even

the uncrosdinked polymers curve 1to llld 0 n 6 t thessteap wlope & predited by the

freechain model, eq.(1%.

Thus, chain model :dtdus cedainly mopfer stacalfmatarialss ol | ds a
also not above glass transition.

The st or ag(w)issabodtuhke migor iage of the relaxation modulus G(t) with

respect tdhe modulus axis Gw) = G (1/t) v G(t). Thus théehaviorafter long times is

the same as at low frequencies. In the same avéigst impression of the creep compliance

J(t) follows from a mirroimage reflected in the time axis: J{t)1/G(t). For the same ae
sonthatG(w) resembl es G(t)w)pesembldsé@reflecdedinthear ds, J O
compliance axis. Fomerosslinked polymers, this applies for the recoverable part:

J(1/ t)° Jt)- t/ h.

e
o

(o]

[<4]

10g G’ (w) or logE’ (w) in dynes/cm?

I
5
logw - A logw — A

Fig. 2.6.1.Storage modulu& of all typical polymeric systems [8]. The arbi
trary horizontal shifts A of: | to VIl are3;-1; 0;-7; 0; 0; 2.The de
formation is shear except for curves V and VII, which arersib@.

The types of polymers of fig. 2.6.1 to 2.6.3 are:

I: alowmolecularweight polyisobutylene, the gnone type thaapproaches the best the
limiting behaviorof quastlinear visceelasticity.

[I: and IlI: uncrosdinked polymers of high molecular weight (long chains) that by its
lengths will have a probability of local side bonding connecting the chains, what is
called entanglement coupling in the classical rhaderves Il and Il show the glass
transition in 2 stages by the 2 types of bonds. The first stage of descent of the curve, at
high frequencies or short times, is regarded to show motion of chain segments between
the entanglement coupling points. The hehorizontal plateau zone, is regarded as an
"equilibrium™ modulus that is reached, showing the rubber like elastastglso is
seen for the lightly crosnked networks V and VI at low frequencies or long times.

The bond breaking of the bonds betwé#an chains, is regarded in the classical model
as slipping of the coupling points showing the second stage of a steep descent of the
curve, representing the terminal zone. Type Il (polyctyl methacrylate) has large

side groups, decreasing the modulus.

At long times or low frequencies and at equiliin in the plateau zone G or €hould
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vanish according to the classical theory because of the resumption of random average
configurations by the macromolecular coils in the deformed sthie.ig not the case

and ainBgo2.6@, (similarto H of fig. 2.6.3), shows still fieivalues. Further,

at high frequenes, the perfect elastic behavismpredictedby the classical theory and

G should become zero. It is seen in fig. 2.6.2 that this is not the case, but that on t
contrary, G" increases enoraudy and becomes many orders higher at high fraque

cies showing the same values as for crystalline material VIl or amorphous material in
the glass state IV (showing thus the same time dependent processes).

IV: The glassy state of an amorphous polymehwigh molecular weight, (the only one
here below glass transition) that oslyows local readjustments agiplained by d-
formation kinetics [2]. These processesplain the time dpendent behavraas creep of
structural materials (like wood, concreségel, etc.).

V: A lightly vulcanized rubber providg a lightly crosdinked network.

VI: A soft gel, that, as V, is lightly crodmked but now by crystallites as links. At long
times, or low frequencies, the lightly crdgsked networks V and VI, ra regarded to
approach an "equilibrium" rubbdike shear modulus. However fig. 2.6.2 shohatt
thisis not true because@nd H of V and VI dondtpvani sh.
resents a common process of he same type as found in the glassy and crystalline po
ymers IV and VII, what is explained by deformation kinetics [2].

VII: A highly crystdline polymer with a matx of crystallites (that shows no change of
crystallinity). As mentioned before, the rather flat spectra H of IV, VIl and V and VI at
long times (see fig. 2.6.3) can not be explained by linear spectra but are explained by
one nonrlinear deformation kineticgrocess. It i®asy to show by a test theggectra do
not really exist (see 3.4) but that the spectral lines are the expanded terms of-one non
linear piocess (see 3.3).

The plots of H in fig. 2.6.3 show similar shapes testhof G in fig. 2.6.2, refleted in the

modulus axis. (In the same way the retardation spectrum L resembles the losarmempl

J reflected in the compliance axis).
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fig. 2.6.2.Loss modulu§s of the 7 polymers described above [8]
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fig. 2.6.3. Therelaxation spectrumiH" of the 7 polymers described above

Several modifications of the series of H (for crbsked networks) by several characseri

tic modes of several types of linked strands (using bond rotatisteadof the simplified

model of entropprings) and networks (or series of networks) only give qualitagéve d
scriptions of the behauiat transition, e.g. with square root (Rouse; Buech®alti and
sqguare dependence of J0606 o m@appltedrangelofineasr oughl y i
uremens. Howeverreal fits of the whole bel#r are not possible by the chain andveo

law models This is evident because the very long relaxation times can not be explained by
extrapolation of the model {@mpossible)motions of large groups of strandslafge d-
mensions, while physics, shows, [2], that bledavioris explained by the very local

movement of small flow units (segmental jumps, or dislocations movements in crystals,
etc.).

3. Explanation of rubber behavior by deformation kinetics

3.1. Introduction

The properties of liquidike materials usually are determined at flow of theeniat For
crosslinked polymers that are not able to flow, creeprelaxation tests can be done for a
first parameter estimation. The deformation kineticsaiqus, explaining these processes,
are given in [2]. By a simple test of zero relaxation after a relaxation test (see 3.4), it can
be shown that only one ndimear process is acting in a wide time interval of margr de
ades and thus a spectrum of relaxatimes does not exist.

Thusnone of thaised othemethodqas free chain models, power laws, general functions,
etc.),that are basedr implicitly basedpn the existence of linear spectra, is ablexto e
plainthis behavior Thus the apparent relaxatispectrum, (that is nothing more than the
derivative of the measuronghordinear procds® [2lclur ve) , i
will be shown in 3.3, that the Rouse spectrum is identical to sexpansion of such a
nontlinear molecular kinetics pcess, that is not a structural changegss o transfo-
mation.

3.2. Stress relaxation

According to [2], the constitutive equation for thise#@sidentical to that of a stgsn of
parallel nonlinear Maxwell elements. Mostly the relaxation timesh&f elements are far
apart and all Maxwell elements act like springs, with sprimgtamt K, and only one is
noticeable as such during the test providing almwar threeelement model with one
Maxwell element and a parallel spring [8ke fig. 3.4)
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The total stressis =s,, +s,, wheres, =K,e is the stress on the free spring andis
the stress on the Maxwell elemest; =K,(e- e,), thus s, =K,e=s - s,,. Above glass
transition, all Maxwell elements may flow and the stress afteratbaxafter long time
approaches its minimum value. The strain tef the viscous straie, of one pocess (=
one Maxvell elemengiven in Fig. 3.4 follows:

é =, e’ + @ because for relaxatiod = 0 or:

& =SK— B-sinh( ,f) sO (25)
1

or:

e, Dsinh( K( §)) (26)

or: de, 3¢ Kler g3Ke 1) gotel - .f.+..8 = (27)
g —

giving as solution:

e—fs, e—3fs, e—5fs, ] e-fs,o e—3f S0 e-5f S0 pt
+ + + é - - -¢ = (28)

fK, 3K, 5K, fK, FK, 5 K, 2

As will be shown below, eq.(28) may be interpreted as terms of a spectrum that is a similar
line spectrum as the Rouse theory, exphg the better results in rbbr theory by using

this line spectrum than by ugira continuouspectrum. (Athough a line spectrum is péy

ically impossible, it does exist as expanded terms of the physical right equation).

Eq.(28) can be written:

1 f 1 f s Dt
m.arccoth(e v )?1 .arccoth(eV0 )=2— (29)
or - § fln%anhgegt K, f arctanfh e f\8 82
¢ ° U
or: -s,f° |n§éanh§e[23tf K, +ef %ﬁ_zf (30)
or at the start of the process when tanh(:
-s fo° In%;—tf K, ref 3’080 In%é+%tf Kl.ef 3’08- f s (32)

a4 to
or: s,f%sf- Ineé+FQ

At longer times eq.(31) becomes:

S, f 2s,f - In(t/t) (or: s fosyf - In(t/t)) (32)
where to6 1 s a2 (é)ef P K, yshowingrthe lingéaliné on logtime

scale. Further an extension of this straight line fo= 0, shows that the intersect with this
ti me axi s Ky leisg the defaxatiold time Based on the straight part of the
l' ine. ThuBsgy,. I n(tddé/tod) =

For very long times eq.(30) becomes:

a aD 50
-s,f%In {.;éanhgeéf Klt'_gg
giving the curve ofs,, approaching, = 0,0r: e, - ¢,, = e (in this case of a symrie
rical energy barrier of activation).
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3.3. Explanation of the Rouse spectrum

It is easy to show by the simple test of zero relaxation (see [2] or 3.4) thatraspas
physical reality does not exist. However, the really acting singldinear process can be
expanded mathematically into a row, showing in some testathebehavioras if there is
a line spectrum (i.e. the expanded terms).

As given before, the integration of eq.(26) gives:

e—fs, e—3fs, e—5fs, 'e-fs,o e—3f So e-5f S0

. D
K, Tk, TEK, T ¢ Tik. 3k 5k ° 2t W)
This equation shows that the timigto reach the end state of total relaxation, or
s, =0, is:
23 1 1 0
t t-+—+-+..0- ©

® nD 3 5
where n =f K,. Thus, the time to reach equilibrium in the end state is infinite. The Rouse
equation for the relaxation time also shows an infinite sum of the row of relaxation times
andcut offs of this roware usd to have a converging row.

Because the first term of the Rouse row provides the main contribution to the spectrum and
the viscosity, eq.(28) should be comparable with the Rouse equation,athe=relaxation

time of Rouse. Withetv 0 and thus omitting the small terms (witls ) this eq.(28) b-

comes:

N/ 5

dfs g3fs 5% 0 2 v . C,
EIK, Ak 5K 9D T b Wi T (seeateadls)
Thus:
fsa g2As S4s 6 3 5
e e e Da, 1 1 0
A+ + R
K, gé 3 5 o= @retE e (39)
f

giving: c; =2/ DfK,e ¥)=t"e™* =t/ 1.15 or the longest relaxation time of Rouse
is proportional and of the same order of the relaxation tiofette falling curve as can be
expected. Further is:
1+e-2f ¥ +e-4f ¥ + :1+i+—1+

3 z Ztg
orin generalf g = Qn{ p2/ (2p- 1)})/ (2p- 2), forevery: p=2,3,4,5, ..., giving:

p 2 3 4 5
fg ~014 ~014 ~014 ~0.13

orf g v 0.14 because the first few terms determine nearly thebetaivior
The value off s,, quickly decreases at a small change of the power of the rown+or i
stance for a 5% difference, when the power is 19eaad of 2f g - 0.11,

p 2 3 4 5

fs ~011 ~012 ~011 -~0.11
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according tof s :Qn{pl'gl (2p- 1)})/ (2p-2,f or every: p = 2, 3, 4
For a power of 1.7 s, is about 0.05 and at the power of 1.6, close to the Zimm value, the
weighted mean value df g, is very small close to equilibrium amita showhat there is

a steeper slope, ap@ching the Zimm value at the longest times, near dxwiin, by the

lower f s, . Thus the chosen cutoff of the spectrum explains the success of the uge of po

er laws n the terminal zond-or linear visceelasticity, a similar expaion is not posble
andthe Rouse spfrum thus cannot represent a linear process

3.4. The non-existence of spectra of relaxation times

The response of a stress relaxation test cannaedmibded by a linear viseslagic pro-

cess or by a spectrum @hfinite) linear relaxation processes. It is necessary to useithe e
act description. As solution of the exact etiprg an expansion of the f@mtial energy ba

rier can be used, leading to a Ismectrum of elementary ndimear reactions. However,

the pectral values of the "lines" are so far apart from each other, that they act as separate
processes and not as a spectrum. In anyrempsttherefore, only one or two elentary
processes are detectable. Acliog to the constitutive equationbgse twgrocesses can

be rpresented by a system of parallel (Hmear) Maxwell elements. Because the ralax
tion times are far apart, only one or two Maxwell elements are noticeable in a test, while
others (if present) flow too fast to be loaded or flow too gtmle noticeable and thus act
as spring, within the time range of the test.

The whole relaxatiobehavior including the delay time (of no decrease of stress) at the
start, the linear stress decrease on thditog scale and the bend off to elijjoiium at the

end of a process can be represented by ondimzsr Maxwell element and a parallel

spring (fig. 3.4) with a notinear dashpot according t@fdrmation kinetics, representing
one relaxation time. If the straight relaxation line (on koge scée) is kinked, there is a
second process acting with a long dedieye [2].

relaxation

time

Fig. 3.4. Zero relaxation by zero internal stress [2]

To show that there is only one relaxation time acting in a long time range and not a spe
trum, the following test was derin [2]. In a relaxation test on wood, after a few hours of
relaxation at the working strain level, (enough for a parameter estimation), the internal
stress was made zero by reducing the load on the specimen to a level of about 0.6 times the
initial strain (depending on the time of testing and to be found by a searching procedure

see fig. 3.4 and [2]). At this stress level, the stress on the dashpot (and spring of-the Ma

well element) is zero in fig. 3.4 and the total stress (in the free spring) remaifastiye

constant showing no further relaxation or change during the next 24 hours (the time of this
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test in [2]). Thisbehaviors not posible if there exists a contious spectrum. The stress
always should change then. But also a discrete spectrum expi@in thisbehavior In

order to explain e.g. the measured constant value of the loss tangent or relaxation spe
trum of wood and of other glass, by a discrete linear vigtastic spectrum, the adjacent
relaxation timed can not differ more than by one ordér., ¢ 10t; (see [2], pg. 97). The
zero relaxation test however shows that loading one order of time longer than tlee first r
laxation period (of the first element) does not show any change of streigsit whould

have been of the same relative order. Paifect constancy of the stress shows the next
relaxation time to be many orders higher than the first one (in stead of oneighs) h

and there thus is no ciibution of a spetrum or a line sperum

3.5. Viscosity equations

When a material may show viscous flow, the direct measurement of the viscosityols appr
priate for parameter estimation. At flow, all sites are used and there is no change of the
concentration and the stress is constadttha rate of change of the elastic strain is zero.
Thusin eq.(25) i$, =0 andé = ¢, .

For no structural change, eq. (266) applies o

. _ S . ,

é = K—"+A-S|nh( f.,9 Agsinh(, ,) (39)
1

If there are more processes acting (visualized as a system of paralleleaorilowing

Maxwell elements) the total stressis: s =s; +s, +s; +..., Or:

s iarcsinrgee— +iarcsinkgee— + iarcsinr‘gtz,.(:"— + e

1 QAl P (;Az fs (;As
The viscosity thenish=s/ & or:
h _arcsinhe /A) | arcsinhg /A)) | arcsinhé /A)

e f éef éf

Because relaxain times of the processes are far apart from each other, only a few terms,
are noticeable together in the viscosity equation. All very small values of the variable "x"
in arcsinh(x) act as one Newtonian process and all very latgesvare not noticeablEor
very large values of x is: (arcsinh(x))/x 0 and these processes thus are not actiag. B
cause of this eq.(40) applies for no more than 3 processes. For very small values of x is:
(arcsinh(x))/x = 1 and processes with thisperty act as Newtonian or are quasi Newton
an in the range of measuring.
Eq.(40) then becomes:

1 N arcsinhgé /A2)+ arcsinhg /A)
F1A; ep e}
It further is possible that the second term rhayhonl i near , as given in eq
strain rates2, while it may become quasi Newtonian at low rates, bei(fgA ). For
larger values of x, arcsinh(X)In(2x)ande q. ( 400) thus becomes:

1 . arcsinhe/A) 1, ax%

e—+ —n

fA; 3 & A
As wi | | be shown below, eq. (406) anbd (40060)

bers, while eq.(40) holds for solid plastic systems. Linear saastic behaior thus does
not exist for structural materials, even not above glass transidallows from eq.(40Q)

(40)

s o (40)
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3.6. Solutions of high polymers

The equations above should contain, for a solution, one extra term of the flow units of the
solvent molecules. The solvent molecules generally flow more easily than the high pol
mer solute molecek. Thus, dilutecdutions only will show one peess of shearing of the
solvent molecules. If this solvent is Newtonian, then real lihebaviorcan be expected
to be possible and measurable.

g. (406) becomes for solutions:

1 1 a!’!_CSIr-]hé IA) afgSIf\h(? IA)
foho AL g f g ef
whereh, =1/ f A, is the viscosity of the solvent
The following quantities are often used for solvents:
The relative viscosityh,, is by definition h, = h/ h,
The specific scosity is given byhg, =h,, -
The intrinsic viscosity is defined ah,m = hsp/ c, where c is the concentration
The limiting intrinsic viscosity '], (for low concentration approaching oris:
[h] = lim( hi ) o
The inherent viscosityh,,, , is defined agin(h,))/c.
For small terms and very small concentrations, this is equal]tadcording to:
a , .
1 h 8 1In 1 a 1 alchs.mh(a IA) ar+cs'|nh(a IA)
8%_ alaflA N ef h s oef h

1a 1 arcsmh / arcsmh / o
ol €/A) gresihe /A) Bonbo 1] (41)
Cc AR "efy, h s £ f h
what holds for low concentrations and small relative visigssof the groups or:
.. arcs!nhe /A )< 4 (42)
éefyh
These equations can be used as first approximafar parameter estimation. At the end
the exact equations fbrnh and hg, should be used:

(40)

In(h,e,) I aé a+rcs.|nh(a IA) ar+cs.|nh(e/%) (43)
C C ¢ f 1A ia e h s £f
and: In(h,,) :md? 1 e+1rcs.|nh(a/A2) ar+cs.|nhe/A\,,) (44)
AR ek h 3 £ f
For small rates, |appllcable eq.(43) becomes:
In(hrelo) 1,4 1 1 0
B Ty Ty AR “3)
and at hlgh rates
In(h G
( reln 8 (43)

:" Sé flA hg

In matenalsand wood science, there still is a belief (against facts) in the existenceanf lin
visco-elastc relaxation spectra (thus spectra being independent of the stressggng.

the timestress equivalence). To discuss the consequences of such an assumption it first is
necessary to study the cases where there is a possibility of existence of dogi&ldve-
havioras for liquids, soft dals and crystals or metals near melting. Further solutions can

be regarded for stagesttyveen the liquidand the solid state. Of course, the solveifits
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these solutions shouldiave as Newtonian (thus should coheisshort bulky rotatioal
molecules) in order to have any possibility of linbahavior

In(q

rel) Polystyrene

Soivent. Benzene Exp. @
Conc: 0.04

Theo —
Temp 25°C

MW
6.5-10*

_12410°
.o . o 28810,
0 ! ] e ‘10 ~ sec
o 5 10

Fig. 3.61. The effect of molecular weight of polystyrene solved in benzene,

c = 0.04 g/100 cc; temperature 25 0M6;= 6.01:10° poise [ 17].
The theoretical curves are according to eq.(43).

In fig. 3.6.1, measured viscosities by a capillary viscometer are given of a dilute solution.
It is seen by the straight line parallel te e+ axis, that only the shortest chain, witlo-m
lecular weight of 0.288.f0behaves as (quasi) Newtonian (With,/c =1.08 cnilg),

within the strain rate interval of the measurement. At tbiecalarweights of 1.24.19to
2.22.16, two types of flow units are present, onedr and one nelinear as follows from

the negative slope, which increases with increasing molecular weight. Three types of flow
units are acting at the fractions witiolecular weigts of 5.5.18t0 6.5.16 as follow from

the sharp increase of the curvature at low vatidies that increases at increasing molec

lar weight.For the fit of the curve in fig. 3.6.1, of the solution of polystyreitb molew-

lar weight 6.5.18 the parameters aré/f A, j = 0.168;1/A,h, = 0.0795;1/Azh, =

=1.57;1/f, = 2,01 N/nf; 1/f, = 0.00129 N/rh

Comparable mults are found for other solutions. For a polystyrene solution in cyclohe
ane, for instance, two types of flow units are present at a molecular weight: m.w. £ 2.4.10
and three types at m.w. = 5.2°8#2 65° C, while this occurs at m.w. = 5.2% @espetive-
ly m.w. = 9.2.18 at 35° C. At 35° C there only are 2 types of flow units acting (below the
highegt tested m.w. = 9.2 % @vhile at 65’ C the third kind of flow unit acts above m.w. =
5.2.10.
As can be seen in fig. 3.6.1, Newtonlahavioronly is possible, in the given strain rate
range, in dilute solutions of low molecular weight solutes in Newtonian solvents. At i
creasing molecular weight the probability of formation of stronger types of bondssincrea
es. This also is the case for higher comraions and when molecules unfold in poowusol
tions at higher temperaturéghese stronger bond types are not acting through thedNewt
nian solvent and thus are nbiewtonian.
In fig. 3.6.2., the influence of the concentrationigy, is given for the highest m.wand
highest temperature tested, thus showing the influence on all three kinds of flow units. The
equation ofh,,, is given by eq.(43) and the paramegstimation of the fit showthat the
terms 1A ;h, are independent of the concetityn:

1 Af, KT/ h)Ngexp(-E'y/KT)-(I o/ NoKT)
Ah, A (KT / h)N; exp(- E',/KT) B
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- I 0 exp?é (E 0 E 1) (45)
Nk C kT
______ln(anI) 9 Polystrene MW 2‘5-10‘
Solvent: Toluena
¢ g Temp  85°C

0.014%5 94100 ¢c.c.

® Ezxperiment

e Theory 00290 ¢ /100 ¢c.c.

0.0581 g/100¢c.c

2 ¢/100%¢g ¢ é‘10—3 sec—1
:'11:2‘1111111

0.116
[ T TS L I N O O O
B3 10

o

Fig. 3.6.2. Effects of concentration o), of polystyrene solved in benzene,
molecular veight: 6.5.16; temperature 88C; h, = 2.99.10 poise [17]
The theoretical curves are according to eq.(43).

and it appears thatj = Npand| , =1 ;T an d 3H;. Thus, flow ofthe solvent is dete

mining and the internal stress on the dilute is such that thisritenis félowed with the
same apparent parameters. In eq.(45)ismdependent of the coentration because the
concentrdon of the solvent is ~ 1 and the numbégactivated sites his not influenced by
the small dilute concentration

The curve fitting further shows thaf (cf;A;hy) is independent of the noentration

c =cN. Becausé\ ,h, is independent of the concentration according to eq.(453/s0

has to be independent of the concentration and of N. Thus:

cf, =c'NIl;/(NkT)=cl ;/ kKT =cl ',/k (46)
This needs not bihe case in a poor solvent for thecond and third process<R,3)
where N is a function N(c) of the concentration c that is more than linearly irenga

with ¢ :

cf,=cl;/ KTN, = cl; /(KTN,(c)) 47
showingthat another process is acting causing the increase of flow units. This ondy is po
sible if a no bonded (folded) flow unit unfolds, and makes bonds with its neighbedrs. B
causel/f is larger in a good solwe than in a poor onéhe polymer molecule extends

more in a good solvent. Consequently, the polymer in a good salgenhas more prab
bility of making strong bond types with the neighbours

It can be seen that the slope of the curves in fig. 3.6.2 is constant irrespetieem-
centrations. It follows from eq.(41) of these curves, that the inherent iyscos

hi.,, XIn( K)/c (°, hL)/efor dilute Dlutions, is:

h o 1 .. arcsinhé /A)
" of,A R cegf h
Becausecf ;A h, is constant, the difference tt,, for 2 concentrations,@nd ¢ is:

. arcsinhg /A, ) .. arcsinh(e/A,
A 1 P a - =

ce f; oh C, 8%
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= %(a arcsinhé /A, ) - qarcsinh( €A, )
0 %(a N2 éA,) AnQ I4,)

= A NAL/AD,

independent o€, as necessary for a verticalfsiof the curve, without a change of the
form of the curve, at a change of concentratidius

ALlA = (exp(Si,l- Si,)/ k)(Niyll N, ,), proportional to N;, / N, , and N is known
from the shifts of the curves depending on the concentration c.

Further is n constant or:

n=c'ef, hc'&" /Agf c' T hK &b E'JKT) (48)

The influence of the temperatumn h;,, and[ h] follows from reduced curves df ob-

tained by using reduced sheaesath,e. The h,-reduced curveh/ h, versush, “¢is:
h —1 4 1 . arcsinh(é 5‘1/Ai on (49)
ho AL h ihhe

This means that/ A;f,hy; 1/ f, and1/ A;h, are independent of the temperature. From
eq.(45) follows:1/ A,f1hg = (1 'oN;/ 11 Ng)-exp(- (E,- E;)/ KT). This is ndependent

of the temperature wherexp(¢ ( BOE §/KT) is independendf the temperature. Thus
when: exp{( HOH®) / K Toi#Sp( SK) =HT8NP KOS rH6 HO

Thus, this reducibility shows that the activation heat for the flow process of the polymeric
flow units is the same as that for the solvy@mtagood solvent)The processes are dete
mined by ativation of the solvent molecules. As mentioned before, from eq.(45) it also

f ol |l ows= tHemecessdry for the constancybfA;h,, independent of the e
perature. Further, e@6) gives the constarfit independent of the teperature

In fig. 3.6.5, expeémental values offi] at 65°, 50°, and 35’ C are given. Itis seen that,

for a poor solvent, a reduced curve is ndboted. The higher the temperature, the larger

IS the limiting intrinsic viscosity n]. In this casel/f , increases with temperature,

L -
n I Polystyrene O Experiment
65° —— Theory
= ]
50°
- M w: 52-10° ~
Solvent: Cyclohexone
2 35°
d O~ \% —0—
— - . 2
] l ! ! ! ] Em, (dynes/cm®)

80

Fig. 3.6.5. Effects of temperature lop, for polystyrene solutions, in a "poor"
solvent [17]; polystyrene m.w. = 5.2%®olvent cyclohexane; noen
tration, infinite dilution. The theoretical curves are according to eq.(43).

although it should bendependent of the tempéuege. This thus indicates the increase of
"N" and thus that in a poor solvent the polymers unfold with increasing temperature while
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they fold with decreasing temperature. The-neducibility is dugo the change of the
structure by unfolding of themolecdes with increasing temperature.
When h,, of the solvent, becomes negligible, reducibility is obtained by midépon of
é with: exp(Hj/kT), as follows from reaction kineticghis is the case for concentrated
solutions and for solidBoth types of reductions are measured for instance at flow of a
dilute solution, a concentrated solution and a pure 86518 GRS rubber (24 % gt
rene and 76 % butadiene copolymer).
The reduced shear rate for the concentrated solution and the solid is:
e =eexp(H;/ RT) and the activation heats are: 3.9 and 9.75 kcal/mol, respectively for
the 10 % and 50 % polymer solutions. The actoraheat (activation enthalpy) of the solid
(100 % concentration) is 12.5 kcal/mol.
The activation heat 3.9 kealol of the 10% (dute) solution is about that of tlselvent
and for this case the curve thus showshhe reductbn explained before.
The rate eqgation of flow of the 50 % solution followsxactly:

arcsinhé /A ) N arcsinhé /A )

fl f 2

andthusacts as the pure (100 %) solid polymer, also showing tlwBnear groups e
cording to eq.(50).
For dilute solutions Hequal to the solvent value) ahd(in the case of noniolding) are
independent of the concentration. For concentrated soldtibpand 1/f ,, increase with
concentrabn as do the activation heatsétd the reduced valuesjexp(H/RT). As men-

tioned before, because/f NKT/ , the increase with concentration shows that there is
an increase ohe concentration of flow units N by unfolding and bond formation between
a flow unit and its neighbours. The increase ofrduiced Avalue Ajexp(H/RT) =
(kT/h)Njexp(S/R) with increasing concentration, if more than linearly, indicates that also
the ativation entropy Sj increases with concentration as can be expected by the increase of
bonds between a flow unit and its neighbour with increasing concentraécaud now

the solvent is not determining any more (as is the case fdr,theeduction) the solvent
molecules are able to flow only when the bonding between the sollgeutes flow. In
highly concentrated solutions, the solvent molecules mugeghier with the polymer flow
units. Thus, the 50 % solution behaves tike pure solid (see 3.7

The before mentioned reducibility by division by or, what is the same, the equality of
the activation heats of the polymer and soint Hy and the temperature and concantr
tion independent , shows that the solvent determines the process and the rate determi
ing step for the solute unit involves the jump of the solvent molecule. The solvent mol
cule must move in the opposite direction, while the flow unit moves forwdiltldat the
space vacated by the solvent molecule. The same occurs in the diffusion of a l&ge mol
cule in a solvent of small molecules. This has been tested. A foreign molecule similar in
structure and length as the monomeric unit, dissolved in the nesrfana translatofric-

tion coefficientz, = kT/Do, where i is the diffusion constant at vanishing concantn

of this low-molecular weight component {[ls measured by transpiration, aljgoam-
desorption or radiactivity of tagged molecules). Far above the glass teatpee T, (e.g.

(50)

in rubber)z, is the same ag,, the friction coefficient of the monomeric unit of the ol

mer backbone. Thus activatedits move as if there is no chain and essential is thé-kine
ics, where the entropy is determined by the entropy of random mixing and thipgingha
calculated in terms of the nearest neighbour bonds and their bond strengths as in a regular
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solution model(in stead of a flexible chain model). However, whignis gpproached, the

kinetics of the determining process is quite different becauseztjren z, showing that

now the scale ofativation is reduced to that of the side bonds and now the attached chain
units prevent free moving of activated monomeric parts of the backbone.

3.7. Undiluted solid polymers

Chain models are also applied for the description obéaviorof solids.This however is

not possible, as shown before, and follows from the exact desorgotd explanation of

thebehaviorin the following.

As discussed before, linear visetasticbehaviorwill show, on the plot oh versuse, a

straight line parallel to the- axis (line 1 of fig. 3.7.1). Because this never is the case for

solids, an extrapolation of the versus 1¢ plot stould be made to the zero value o 1/

giving the apparent Newtonianvalle because the other ter ms

determining, eq.(51), are zero then.

h= 1 + arcsinhe /A ) = h, + arcsinhé /A, )
fiA; e e

It is possible that this extrapolation gives a negligible valule ofindicating no NewtonR

anbehavio) while at low rates a godit of eq.(51) is possible. Thisdicates that non

Newtonianbehaviormay become Newtonian according to:

e= Asinh(f s) ° Af s=s/ h.

As mentioned before this only may apply for very shoolecules and not for structural

materials becausg,f then mostly is constant and a low initial stregswill cause a high

value off and the rate still follows the nordinear sinhdependence 0§ .

(51)

rate of shear &

Fig. 3.7.1. Viscosity dependent &f Curve 1:N=1/ A,
Curve 2:h Harcsinh( A ))/( £.
Curve 3:h Harcsinh{ A ))/( £.
Curve 4 is the sum of curve 1 to 3. Curve abc is the sum of 1 and 2.

Knowing h, , (if any), the fit of the second process should be done at higher rates (line bc

in fig. 3.7.1) and extrapolation of this process to low valueg @fne abc in fig. 3.7.1)

makes it possible to determine the third process (if any) by the difference of theemeasur
ments and line abc (see fig. 3.7.1).

In fig. 3.7.2, a fbw curve is given of natural rubber (a masticated rubber of lightly milled
crepe). In order to obtain a reduced curveshtduld be constant and
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Fig. 3.7.2. Reduced shear rate, dependent on the stress, of rubbers [15]

f = /ANKT) 'K#NK) has to be independent of the temperature. As tajeceed from

the m.w., this material shows (quasi) Newtort@havior(eq.(51)) at low stresses and

shows two no#linear processes, given by eq.(50), at high stresses. Stronger cruseed mat

rial, with a still lower m.w., did show a Mgonianprocess, in the whole tested rate range,

and followed eq.(51), as to be expected. figher m.w. causes a longer relaxation time

1/ A, while the ent hadignyoluMe (1(f8 1l ¢0d N/Mae! ) and

the same as for theaterial with low m.w.This shows the same segmental motions (the

same volumd and energy of a jump ) that are more difficult to coordinate by theden

er molecules. This causasigh negative activation entropy [2], (i.e. the coordinatge se

mentalmotions in long molecules are much less probgleppplies for wood)

In fig. 3.7.3, flowbehavioris given of polystyrene, measured by the capillasgarimeter

at temperatures between 2émd 256 C.

The reduced curve of fig. 3.7.3 is obtained bing

ehg, wherehg is the viscosity at smaé, thushg = 1/ f /A, +1/ f ,A,. Thus, eq.(50)

becomes:

S = arcsinh(é b/A; h N arcsinh(é /A, h
f 1 f 2

and represents a reduced curve wherf ,,hA,,h A, are independent of the temper

ture.Becausen A; = (1+Af,/ Af,)/ f,andhA, = (1+A,f,/ Af,)/ T, is also ne-

essary that /A, is independent of the temperature dmdits t he ent hakpy 1 s

H , what is typical for the possible liquitke character of rubbery materials where diffe

ent relaxation times (differing here 2 to 3 orders) are determined by differenctopye

Thebehaviorof the short bulky pgmers may, by the small activation volume pagten

also be quadinear visceelastic in the glass state. The storage andslesar modules

(506)
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