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1. Introduction  
Limit analysis is a technical exact approach for reliable upper- and lower bound estimations of the 

ultimate load. Structural design and strength calculations therefore have to be based on limit 

analysis, at least on the lower bound equilibrium method by choosing an equilibrium stress system, 

covering the whole body, which suffices boundary conditions and nowhere surmounts the failure or 

yield criterion. The high value of 
cG , the critical energy release rate, with respect to the surface 

energy, shows, that there is sufficient plasticity for a linear elastic- full-plastic approach of limit 

analysis. Because the isotropic wood-matrix is determining for fracture, linear elastic fracture 

mechanics (LEFM) applies perfectly for initial fracture of wood. Plastic deformation of the 

polymeric reinforcement occurs at creases at the crack tip, called fracture process zone. This zone 

also is the location of micro crack and small crack multiplication and propagation. Wood thus 

shows local small scale yielding at the crack tip. First yield occurs at the highest elastic stress at the 

crack boundary, what also is the location of the highest ultimate strain after yield and thus is the 

location of crack extension. This zone of confined plasticity also can be replaced by the equivalent 

linear elastic ultimate stress value (similar to the applied linear elastic bending strength diagram to 

represent full plastic bending compression flow). The difference is an internal equilibrium system, 

which, as all initial stresses and deformations, does not affect the ultimate load, according to limit 

analysis theorems, based on the virtual displacements behavior. This explains why, outer regarding 

the flow stress at the elastic plastic boundary, also LEFM may apply up to failure at the crack 

boundary. The so called non-linear fracture mechanics approach, which only applies for the 

singularity approach as correction of infinite stresses, is superfluous, because it is covered by limit 

analysis, (see chapter 4). The always applied singularity approach is not exact, because e.g. the Airy 

stress function wrongly predicts failure when whether mode I and/or mode II (without interaction) 

becomes ultimate at mixed mode fracture. (Thus when I IcK K  and /or II IIcK K ). In Chapter 2, 

the derivation of the exact, non-singular, mixed mode failure criterion is given. Transformation to 

polar coordinates, shows that the singularity equations follow directly from the exact non-singular 

solution. The, in e.g. [1] and [2] given equation:   / 2ij ij IF K r     applies for a stress   

perpendicular to crack with a length of 2c. For collinear crack extension is 0   and  0 1ijF   and 

is: 22 / 2IK r   where ( )IK c   is an arbitrary shortcut for “ c  ”, which follows from the 

exact solution, given in § 2.2.2, (see also: [3], [4]). This is not a necessary parameter following from 

dimensional analysis, as is stated in [2], page 78, and IK  is not the limit of 2y r  , for crack 

boundary r → 0 and strength y  . Both are constant. For small crack extension, (see paragraph 

10.2) it is possible, for a freely chosen singularity solution of the Airy stress function, containing 

points where   , that then 0c , with IK  as limit of c  . This is the only possible 

singularity, which is not a necessary one, but freely chosen, as a possible approximate solution.  

It is shown that the area under the load-displacement yield drop curve gives the total external work 

on the test specimen and not the fracture energy as wrongly is assumed. The fracture energy follows 

from half this area which is equal to the critical strain energy release rate at initial crack extension. 

For wood this correctly is applied for mode II (see fig. 3.4.3). For mode I however, as for other 

materials, wrongly the total area is regarded as fracture energy, a factor 2 too high. The finite 

element method regards the area of the loading-unloading hysteresis loop, Area(OABO) in Fig. 

3.4.3, as fracture energy, what indeed, correctly, is equal to half the area under the load 

displacement curve (0.5∙Area(ABCD)).  

The derivations lead to an adaption of the energy approach for fracture of beams with square end 

notches and of joints loaded perpendicular to the grain, providing a simple design method. It further 

is shown that all, corrective, so called, non-linear fracture mechanics models, as the Dugdale model, 

the fictitious crack model and the crack growth models, are not exact and thus not reliable.  

It is shown that failure according to the modes I and II is not simply related to the dissipated stress 
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type. The so called mode I may occur by dissipation of elastic shear stress energy only and the so 

called mode II, by dissipation of bending stress energy only. Determining for the strength is the 

stress combination at the fracture site (as also follows from the crack closure technique). Therefore, 

these local stresses should satisfy the derived mixed mode failure criterion, which is shown to 

follow the critical distortional energy criterion for initial crack extension and follows the Coulomb 

criterion after “hardening”. It is shown, that strain softening does not exist and thus is not a material 

property (as assumed by cohesive zone models). This “softening”-called yield drop, is a dynamic 

elastic unloading process. At loading, in a constant strain rate test, the unloading rate due to the 

kinetic damage process, [5], is much higher than the loading rate, causing unloading of the 

specimen. Increasing the loading rate may change this apparent softening behavior into apparent 

“hardening”. “Softening”-called yield drop behavior therefore is not possible in a constant loading 

rate test and not in a dead load to failure test, which end in sudden failure (at the speed of sound).  

This yield drop stress, due to crack extension, is a nominal stress, based on unnotched specimen 

dimensions, thus is the mean actual stress outside the fractured area, while the actual fracture stress, 

in the fracture plane (at the ligament), increases and remains ultimate. Apparent and real softening, 

(e.g. thermal softening), are fully explained by molecular deformation kinetics processes [5], and 

here, by limit analysis without assuming the impossible negative dissipation, decreasing flow stress, 

and negative modulus of elasticity of the fictitious crack models. The derivation of the yield drop 

curve of the “Griffith strength” (which is based on a constant ultimate actual stress in the fracture 

plane) is given in § 3.3. It appears that small crack extension and crack merging in the high loaded 

intact clear wood part of the fracture plane explains yield drop and fracture in general, what should 

replace the Griffith law for overcritical initial crack lengths. In that case the Griffith law only gives 

the crack closure energy which then is lower than the crack formation energy. The Griffith law only 

applies for the critical crack length at the top of the initial loading curve. The Griffith stress is a 

nominal stress, thus based on the intact, uncracked, not ultimate, but elastic loaded section, thus is 

the actual stress outside the fracture plane, and not the actual ultimate fracture stress on the intact 

material in the fracture plane.  

It is  shown in § 2.3, that oblique virtual crack extension in the isotropic matrix, by any stress 

combination, follows the Coulomb- equation (also called Wu-equation for wood), what implies that 

failure always occurs by the same actual ultimate uniaxial tensile stress in the matrix, at the crack 

boundary near the crack tip. This uniaxial tensile failure, as measure of the cohesion strength, leads 

to the mixed mode Coulomb-equation, eq.(2.3.10), as exact failure criterion. This applies, as initial 

crack extension, for the isotropic Airy stress function of the isotropic matrix stresses, and for the 

orthotropic total stresses after multiplication with the derived stiffness factors. Only for mode I 

loading, is crack extension collinear. For shear, mode II loading, and for combined mode I and II 

loading, initial, virtual, oblique crack extension is determining providing the lower bound solution, 

as well as for the isotropic matrix, as for the total orthotropic case.  

In the following, is further discussed: the derivation of the power law; the energy method of 

notched beams and of joints loaded perpendicular to the grain; the explanation of the Weibull size 

effect in fracture mechanics, and the necessary rejection of the applied crack growth models and 

fictitious crack models.  

 

1.1. References   
       (See files of [3] to [5] on:   dwsf.nl,    or:   iews.nl     or:    Researchgate.net )    
[1] RILEM state of the art report on fracture mechanics, Espoo, 1991. 

[2] I. Smith, E. Landis, M. Gong, Fracture and Fatigue in Wood, J. Wiley & Sns, 2003.  

[3] van der Put, T.A.C.M., A new fracture mechanics theory of wood”, Nova Science Publishers, 

New York, 2011. - C(2011a) :  

[4] van der Put, T.A.C.M. Adv Mech Eng Res, Vol. 2. Chap. 1: Fracture Mechanics of Wood and 

Wood like reinforced Polymers, Nova Science Publishers, Inc. New York, 2011  - C(2011b).  

[5] van der Put, T.A.C.M., Deformation and damage processes in wood, Delft Univ. press, 1989. 
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2. The boundary value problem of fracture mechanics  
 2.1. Basic Airy stress function  
For the solution of the crack-boundary value problem of notches in wood, the orthotropic Airy 

stress function, is normally based on the spread out of the reinforcement, to act as a continuum, 

satisfying the equilibrium, compatibility and strength conditions. This behaviour only is possible by 

interaction of reinforcements through the matrix. Thus also the equilibrium conditions and strength 

criterion of the matrix, as determining element, have to be satisfied. This also is necessary because 

the isotropic matrix fails earlier than the reinforcement, and determines initial “flow” behavior. It 

thus is necessary to solve the Airy stress function for the stresses in the isotropic matrix and then to 

derive the total (orthotropic) stresses from this solution. This is not applied in other approaches, 

mentioned e.g. in chapter 2. of [1]. In fact none of the always applied singularity models is exact, 

leading to the exact, mixed mode failure criterion (The Coulomb- or Wu- equation, eq.(2.5.10)).  

In total stresses, the stress-strain relations for the two-dimensional flat crack problem are:  

11 12x x yc c    ;   12 22y x yc c    ;   66xy xyc  .  (2.1.1) 

This can be written: 

21/ /x x x y yE E     ;   21 / /y x y y yE E      ;   /xy xy xyG   (2.1.2)  

The Airy function follows from:
2

2x

U

y






;   
2

2y

U

x






;  
2

xy

U

x y



 

 
,  (2.1.3)  

satisfying the equilibrium equations: 0x

x y

  
 

 
 and 0

y

x y

 
 

 
   (2.1.4) 

Substitutions of eq.(2.1.1), using eq.(2.1.3): 
2 2

11 122 2x

U U
c c

y x


 
 

 
, etc., in the compatibility 

condition: 

2 22

2 2

y xyx

y x x y

   
 

   
,  (2.1.5)  

gives:   
4 4 4

22 66 12 114 2 2 4
2 0

U U U
c c c c

x x y y

  
   

   
  (2.1.6) 

The general solution of eq.2.1.6 is:   
4

i
i

U F x y  , where μ is a root of the characteristic 

equation: 4 2
11 66 12 22c (c 2c ) c 0      , giving:  

 
2 66 12 22 11

2
11 66 12

c 2c 4c c
1 '1

2c c 2c

 
      
  

,  (2.1.7) 

thus giving 4 imaginary roots. Introducing the complex variables 1z  and 2z , defined by: 

1 1z x y x' iy'       and   2 2z x y x'' iy''    , the solution of eq.2.1.6 assumes the form: 

1 1 2 2 1 1 2 2U F (z ) F (z ) F (z ) F (z )    ,   (2.1.8)  

where the bars denote complex conjugate values. The stresses, displacements and boundary 

conditions now can be written in the general form of the derivatives of these functions. There are 

standard methods to solve some boundary value problems (e.g. by Fourier transforms of equations 

of the boundary conditions) but in principle, functions have to be guessed or chosen, or expanded as 

polynomials, or Fourier series or power series in: z or 1z , etc. As alternative, eq.(2.1.6) also can be 

given as:   
2 2 2 2

1 22 2 2 2
0U

x y x y
 

     
    

     
   (2.1.9) 

where 1 2 11 22/c c    and   1 2 66 12 222 /c c c    . Introducing 3 sets of polar coordinates for this 
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case,  ix iy re   , 1

1/
i

x iy re
  ,   2

2/
i

x iy re
  , eq.(2.1.9) has e.g. elementary solutions 

as: 
1 1cos( )mr m ,  

1 1sin( )mr m ,   
2 2cos( )mr m ,  

2 2sin( )mr m , and solutions may be chosen in the 

form of series of these types. For wood the elementary solution in mr  are e.g. chosen in [2], what 

leads to:           
 

      A
r r 1 2 3s

K
, , f ,f ,f

2 r
       


   (2.1.10)   

and:                  
 

      B
r r 1 2 3q

K
, , f ,f ,f

2 r
       


  (2.1.11)  

with q ≤ s. The chosen solution is such, that it applies in the vicinity of the notch root as stress 

singularity at r = 0. Because for q < s, and r small, the stresses of eq.(2.1.10) are always higher than 

those of eq.(2.1.11), the solution, eq.(2.1.11), should be rejected based on the boundary conditions 

at failure, (the highest lower bound solution is also most probable). It thus is not right to mention 

that there are 2 singular stress fields, only eq.(2.1.10) applies, as approximate solution, only 

applicable for strength of the uniaxial stress in the main material direction.  

Because wood is a reinforced material where the reinforcement interacts through the matrix and 

also the primary cracking is in the matrix, the failure condition should be based on the strength of 

the matrix and first the Airy stress function of the matrix-stresses should be solved.  

As orthotropic solution, eq.(2.1.10), of U of eq.(2.1.9), always only smaller powers than s = 0.5 (the 

value of the common isotropic singularity approach) are found. For instance one finite element 

solution did show:  s = 0.45, near a rectangular notch, while another investigation of the same notch 

showed values of s  = 0.45 for   and s  = 0.10 for  , while by the finite difference method, powers 

were found of s = 0.437 for the same rectangular notch of 90⁰ and s  = 0.363 and 0.327 for wider 

notch angles of 153⁰ and 166⁰. This shows that no compatibility, at initial failure, of the (linearly 

lower) stresses and strains in the isotropic wood matrix are possible. The, now for wood, nearly 

always applied approach, with (isotropic) s = 0.5, represents flow of the matrix with the, at that 

moment, still elastic contribution of reinforcement, thus follows, in principle, the same starting 

point as the in § 2.3 given derivation of the non-singularity approach.   

Wood acts as a reinforced material because lignin is isotropic and hemicellulose and cellulose are 

transversely isotropic, what means that only one stiffness factor in the main direction has a n-fold 

higher stiffness in proportion to the higher stiffness of the reinforcement with respect to the matrix. 

Thus wood material can be treated to contain a shear-reinforcement and a tensile reinforcement in 

the main direction, and for equilibrium of the matrix stresses applies: 
2

2

1

x U

n y

 



;   
2

2y

U

x






;  
2

6

xy U

n x y

 
 

 
,   (2.1.12) 

In stead of using the matrix stresses and the matrix stiffness, also the orthotropic n-fold higher total 

stresses and n-fold higher stiffness can be used to give the same compatibility condition, (thus the 

same condition for matrix and reinforcement). Inserting, in the compatibility equation, eq.(2.1.5), 

the total stresses, expressed in the isotropic Airy stress function U of the matrix stresses, gives:   

 
4 4 4

22 6 66 1 12 1 114 2 2 4
(1 ) 0

U U U
c n c n c n c

x x y y

  
    

   
    (2.1.13) 

For the isotropic matrix is: 1 11 22/ 1n c c   and   6 66 1 12 22( 1 ) / 2n c n c c    giving:  

4 4 4
2 2

4 2 2 4
2 ( ) 0

U U U
U

x x y y

  
    

   
     (2.1.14) 

Thus:      22
1

11

x

y

Ec
n

c E
  ;       12 12 22

6 21 12

22 11 66

2 2
xy

y

Gc c c
n

c c c E
 

 
        
 

    (2.1.15) 

This new orthotropic-isotropic transformation of the Airy stress function and the calculation method 

based on the stresses of the matrix, is used in the following. It now is possible to use the isotropic 
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solutions of U to find the matrix stresses (which should not surmount the matrix strength) and to 

multiply these matrix stresses with the n–factors of eq.(2.1.15) for the applied, orthotropic stresses 

of initial flow of the regarded loading case. This is applied in § 2.2 by solving first the matrix 

stresses. This is equivalent to the orthotropic solution of the singularity approach, with singularity 
0.5r , what now always is applied.  

 

2.2. The elliptical flat crack solution  
As shown above, the applied singularity approach with s = 0.5, only applies for uniaxial loading 

and thus prevents the solution of mixed mode loading cases and prevents the derivation of a right 

failure criterion. In stead of such a criterion, critical values are assumed of e.g. the strain energy 

density, the J-integral, or the maximal principal stress, or a non local stress function, all at a 

distance away from the crack tip, thus away from the fracture site. A real failure criterion only can 

be based on the actual ultimate stress in the material which occurs at the crack- boundary. A real, 

physical possible, crack form is the flat elliptical crack, which is the first expanded of any crack 

boundary form and because the crack is flat, the higher expanded terms have a negligible, in the 

limit, zero, contribution, When “flow” occurs around the crack tip, the ultimate strain condition (or 

ultimate equivalent stress, see chapter 1), at the crack-boundary determines failure and the direction 

of crack extension. The elastic-plastic boundary (of limit analysis) then acts as an enlarged crack tip 

boundary. Thus limit analysis approach incorporates linear elastic -, as well as non-linear fracture 

mechanics. There is no distinction between the two.  

 

2.2.1. The elliptic hole in an infinite region  
The classical way of analyzing the elliptic crack problem is to use complex variables and elliptic 

coordinates. The Airy stress function can be expressed in terms of two analytic functions [3], of the 

complex variable z (= x + iy) and the transformation to elliptic coordinates in Fig. 2.1, gives:  

z = x + iy = c∙cosh(ξ + iη) or: x = c∙cosh(ξ)∙cos(η);  y = c∙sinh(ξ)∙sin(η).   (2.2.1) 

For an elliptic hole, 0  , in an infinite region with uniaxial stress p at infinity in a direction 

inclined at   to the major axis Ox of the ellipse, the Airy stress function U, satisfying: 
2 2( ) 0U   ,    (2.2.2) 

and satisfying the conditions at infinity and at the surface 0  , showing no discontinuity of 

displacement, thus being the solution, is:  

U = R{zϕ(z) + χ(z)},  with [3]:   (2.2.3) 

4ϕ(z) = p∙c∙exp(2ξ₀)∙cos(2β)∙cosh(ζ) + p∙c∙(1 – exp(2ξ₀ + 2iβ)∙sinh(ζ)     (2.2.4)  

4χ’(z) =  - p∙c∙[cosh(2ξ₀) - cos(2β) + exp(2ξ₀)∙sinh(2{ζ - ξ₀ - iβ})]∙ cosech(ζ)    (2.2.5)  

where ζ = ξ + iη.  

For the stresses at the boundary, due to a stress p at an angle β to the crack, is:  
i2i 2[z ''(z) ''(z)]e 

                and:      2[ '(z) '(z)] 4R{ '(z)}           (2.2.6)  

and the tangential stress t  at the surface 0    is simply known from the last equation because  

 

 
Figure 2.1 - Elliptic hole and coordinates.  
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here 0  . Thus: Determining for the strength is the tangential stress t  at the crack surface 

0     due to a stress p at an angle β (of Fig. 2.3.1) to the crack. Thus:  

t 0 02[ '( i ) '( i )]           = 0 0

0

p(sinh(2 ) cos(2 ) exp(2 ) cos(2( ))

cosh(2 ) cos(2 )

      

  
   (2.2.7) 

while χ’(z) has to vanish at: 0   . 

Eq.(2.2.7) can be extended for two mutual perpendicular principal stresses 1p  and 2p  (see Fig. 

2.3.1) by a simple addition leading to eq.(2.3.1) below.  

 

2.2.2. The derivation of the singularity approach  

The stresses in the wood-matrix of the limit case of the elliptical notch with 0  approaching zero 

appear to be comparable with the results of the mathematical flat crack solution of the singularity 

approach. To derive these singularity equations, (as special case of the general exact solution), new 

coordinates X, Y with the origin in the focus of the ellipse are necessary (see Fig. 2.2)  

Thus:           X = x - c = c( 2 – 2 )/2,    Y = y = cξη   (2.2.8)  

or in polar coordinates:       r =  
0.5

2 2X Y ,   X =  r∙cos(θ),    Y = r∙sin(θ)   (2.2.9)    

and from eq.(2.2.8):             
0.5

2 2 2 22 / 2 /X Y c r c       (2.2.10)  

 2 / cos / 2r c   ,      2 / sin / 2r c   ,          / tan / 2 tan       (2.2.11) 

Using these relation in the stresses , ,     of § 2.2.1 and applying the singularity, 0 0   in the 

general solution of the elliptic Airy stress function, then the tangential stress   along a crack 

boundary 0r , due to a stress p at infinity at an angle β with the notch is: 

           
0.5

2 2 3 28 / sin / 2 cos / 2 sin 2 2cos / 2 sinr cp            (2.2.12) 

for a small value of r , as applies for any flat crack with 2r c , so that all terms containing not 

the factor 0.5r  are negligible and omitted. The other stresses then are: 

               
0.5

2 2 2 28 / sin / 2 1 3sin / 2 sin 2 2cos / 2 1 sin / 2 sinrr cp            (2.2.13) 

              
0.5

2 2 2 28 / cos / 2 3cos / 2 2 sin 2 2cos / 2 sin / 2 sinrr cp            (2.2.14) 

For the, for wood always applied, singularity method, the flat crack in the grain direction is 

supposed to propagate in that direction. Thus θ = 0, and eq.(2.2.12) becomes [4]:  

   
0.5

2 28 / 2sin r cp      and is:    r       and:          r cotg(β).   (2.2.15) 

Mode I failure   t  occurs when   / 2 . Thus when:   r   and: 

 
Figure 2.2 - Confocal coordinates  
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(2 / )tp r c   (2.2.16)  

For pure shear loading, thus for superposition of 1 p S  at β = π/4 and 2  p S  at  β = 3π/4 in  

eq.(2.2.12) and in the other equations of the solution, is for crack extension θ = 0:  

    
0.5

2 2

0
2 / cos( / 2) 3cos ( / 2) 2rr cS 


  


       (2.2.17)  

or :       (2 / )rS r c    (2.2.18) 

with now 0  r
, leading to an ultimate shear failure criterion (without interaction with 

normal stresses) although real shear failure is plastic and a real collinear pure mode II fracture does 

not exists. Eq.(2.2.16) and (2.2.18) thus are in fact maximum stress conditions for the strengths in 

the main planes. Fracture is predicted to occur when the tensile strength is reached perpendicular to 

the grain and / or when the “shear strength" in this plane is reached. Thus: 
I IcK K  and/or 

II IIcK K  for all stress states. This also is predicted for the n-fold higher quasi orthotropic stresses 

and is empirically shown to be not right (see eq.(2.2.16) and eq.(2.2.18) in Fig. 2.3.4). This also is 

shown by theory, eq.(2.3.10), to be not right because according to eq.(2.3.10) failure is always by 

the actual uniaxial maximal tangential tensile stress along the crack tip boundary, causing oblique 

crack extension (see fig. 2.3.1,  2.3.2,  2.4.1,  2.4.2). Thus the always applied singularity approach 

gives no right results for mixed mode failure. The right failure condition for combined stresses, 

eq.(2.3.10), is derived below.in § 2.3. 

The singularity approach regards 0r  , what implies t  , what is not possible. The strength is 

finite and also the radius 0r r  of the equivalent crack boundary (of the fracture process zone) is 

shown in § 2.3 to be constant for a constant stress intensity factor. Thus for a real singularity 

solution, a singular Airy stress function, is needed. This is derived and applied in § 10.2.    

 

2.3. Derivation of the mixed I- II- mode equation   
A general failure criterion [5] follows from the determining ultimate tensile stress which occurs at 

the crack boundary or better, at the elastic-plastic boundary, as plastic stress, which is necessarily 

along (thus tangential to) this elastic full plastic boundary (of limit analysis). By an extension of 

eq.(2.2.7) (by superposition) to 1 1p   inclined at  an angle π/2 + β to the Ox-axis and 2 2p   

inclined at an angle β, (see Fig. 2.3.1), eq.(2.2.7) turns to:  

0 0 0

0

2 sinh(2 ) 2 [(1 sinh(2 )) cot(2 ) exp(2 ) cos(2( )) cos (2 )]

cosh(2 ) cos(2 )

y xy

t

ec        


 

     



,   (2.3.1) 

where the stresses are given in notch coordinates with the x-axis along the crack. For small values 

of 0  and   (thus for flat notches), this equation becomes:  

 0

2 2
0

2 




y xy

t

  


 
 (2.3.2) 

 

 
Figure 2.3.1 - Stresses in the notch plane Ox 
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The maximum (critical) value of the tangential tensile stress t , for initial failure, depending on 

location  , is found by: td / d 0  , giving the critical value of  :  

      
2

2 2 2 2
0 0 02 / 2 2 / 0      xy y xy         ,  or:  

     2 2 2 2
0 0 02     xy y xy t             (2.3.3) 

where the second equality sign is due to the substitution of eq.(2.3.2).  

From the first and last term follows that:    t xy      (2.3.4)  

and from the first 2 terms:                2 2
0/ /  y y xy xy         (2.3.5)  

Elimination of  , from eq.(2.3.4) and (2.26) or from eq.(2.3.5) and eq.(2.3.2) gives:  

2 2
0   t y y xy      and this can be written:  

2 2

2 2 2
0 0

1
/ 2

y xy y xy

t tt vf f

   

   
        (2.3.6) 

This is an ultimate stress equation with strengths: 0 / 2t tf     and 0v tf   , where 0  depends 

on the structural form of the notch. For a hole, as e.g. a dislocation, is: 02r c , or: 0 1   and 

because there is a shear movement of the dislocation, t  then is the ultimate shear stress.  

Transformation from elliptic to polar coordinates by eq.(2.2.11):  0 02 / cosr c    shows that 

fracture mechanics only applies when 0r  and t , are constant. Thus 0r  is the invariant radius of the 

fracture process zone near the crack tip of a flat crack. The flat crack solution leads to:  

 

 
       

2
2

2 2
0

0

1
cos/ 2 cos cos2 cos

xyy I II

Ict IIct

cc K K

Kr Kr

  

     
   

 

   (2.3.7) 

showing that for combined (mixed mode) fracture, when 0  , the apparent stress intensity factors 

of Irwin, cos( )IcK  , cos( )IIcK   are not constant. The value of   is stress dependent and depends 

on the combined loading according to:  

2

2
( ) 1

y y

xy xy

tg
 


 

     (2.3.8)  

for the stresses in the isotropic matrix.   

For pure mode I: 0  , 0xy  , is IcK  equal to the Irwin value. For pure shear loading of the 

isotropic matrix is 0y   and 045  , the stress intensity is lower than the Irwin value, thus: 

 cos / 4 / 2 0.71IIc IIc IIcK K K    .   (2.3.9) 

This is e.g. measured in: [14] according to Fig.2.3.2, for a relatively small initial crack length, in 

Agathis lumber, (density 480 ± 10 kg/m
3
; 12% m.c. 20 °C). The lumber had no defects, as knots or 

grain distortions so that the specimens consisted of clear wood.  

Thus, according to the exact lower bound solution of limit analysis, is the combined- mode I – II 

and pure mode II fracture a matter of virtual oblique crack extension by reaching the maximal 

equivalent uniaxial tensile stress (at the maximal strain) along the crack tip boundary. The oblique 

angle   of eq.(2.3.8) is indicated in Fig. 2.3.3. This oblique crack extension criterion applies, (not 

only for clear wood) as lower bound criterion. Due to the application of virtual work and virtual 

displacements applies that any critical oblique direction for initial crack extension has to be 

regarded. For timber, with many defects, however, an approximate collinear crack extension, with  
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 Fig. 2.3.2. Fracture by pure shear loading by 

oblique crack extension at the uniaxial ultimate 

tensile stress (opening mode) near the crack tip in 

the asymmetric four point bending test with small 

center-slit. (Sketch after photo of [14]), C(2011).  

 

 

small 0   occurs, due to the strong reinforcement, and eq.(2.3.7) becomes the Coulomb equation:. 

 

 

2

2
1

III

Ic IIc

KK

K K
     (2.3.10) 

The fact that 0 / 2IC y c tK c r      is constant, as necessary prerequisite for the existence of 

fracture mechanics with constant ICK , indicates that 0r  is the radius of the elastic-plastic boundary 

around the fracture process zone, (which represents a kind of crazing), which size is invariant, 

(related to the material inhomogenities structure). Thus micro crack behavior within the fracture 

process zone determines macro crack extension. This is discussed in § 3.6 and Chapter 10.  

 
Fig.2.3.3. Uniaxial tensile failure at any  

 mixed I-II mode fracture. 

 

The derivation of eq.(2.3.7) also gives the relation between IcK  and IIcK . For the stresses in the 

isotropic matrix this is:               0 0/ ( 2 ) / ( 2 / 2) 2 IIc Ic t tK K r r      (2.3.11)  

The matrix stresses are also determining for e.g. Balsa wood, which is highly orthotropic, but is 

light, thus has a low reinforcement content and shows total failure soon after matrix failure and thus 

shows at failure the isotropic ratio of / 2IIc IcK K   of the isotropic matrix material, as is verified by 

the measurements of Wu on Balsa by: 0.5
IIcK 140 psi in    and 0.5

IcK 60 psi in   ( IIcK  is higher 

than 2∙60 due to hardening at compression and IcK is lower than 70 due to early instability of the 

test rig in a tensile test, at the initial tensile strength).  

Eq.(2.3.10) is generally applicable also when y  is a compression stress as e.g. follows from the 

measurements of Fig. 2.3.4. When the compression is high enough to close the small notches:   

( , 02y cl xyG  ), xy  has to be replaced, in eq.(2.3.6), by the effective shear stress:  

 *
,  xy xy y y cl        (2.3.12) 

or:       
 

2
*

,

2 2
0 0

1
/ 2

 
xyy cl

t t



   
,   (2.3.13) 

what fully explains fracture by compression perpendicular to the notch plane (see Fig. 2.3.4).  
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In these equations is   the friction coefficient.  

For species, with denser layers than those of Balsa, a much higher value of IIcK  than twice the 

value of IcK  is measured because, due to the reinforcement, η becomes smaller than the initial 

isotropic critical value of eq.(2.3.5) at further stretching. To read the equation in applied total 

orthotropic stress values, the matrix stress iso  has to be replaced by ort 6/ n  and the maximum 

slope of the tangent, slope δ in Fig. 2.2 of the location of the failure stress, is:  

0 6tan / / 1/ 2  m Ic IIcK K n      (2.3.14) 

For small values of η = - |η|, eq.(2.3.2) can be written, neglecting (η/ξ0)
2
:  

   

2

2 2 2
0 0 0

1 1
/ 2 / 2 / 2

    
 

y xy xy

t t t

  

        
   (2.3.15) 

where |η| is the absolute value of negative η. Thus:  

1 I II

Ic IIc

K K

K K
  (2.3.16)  

This is a lower bound, with:  0 /   IIc m IcK K     (2.3.17)  

and the maximal value of  m   is found by measuring IcK  and IIcK , giving e.g. a value of about 

0 / 7.7m  ,  showing that the disregard of  
2

0/   = 0.017 with respect to 1 is possible. 

Measurements between the lines eq.(2.3.10) and (2.3.16) in Fig. 2.3.4, thus indicate a strong 

difference between IIcK  and IcK  of the local structure that is crossed by the propagating crack.  

As mentioned, to obtain real orthotropic stresses, 6/iso ort n   has to be inserted in eq.(2.3.6):  

Giving:                 
 

 

22 2

2 2 2 2 2 2
0 00 0 6

1
/ 2 / 2

     
y y IIiso ort I

t t Ict t IIc

KK

Kn K

  

      
    (2.3.18) 

and it follows that: IIc 0 t 6
6

Ic 0 t

K n
2n

K / 2

 
 
 

   (2.3.19) 

according to eq.(2.1.15) is e.g. for small clear specimens:   

 6 21 122 2 2 ( / )     xy yn G E   = 2(2 + 0.57)/0.67 = 7.7 for Spruce and: = 2(2 + 0.48)/0.64 = 7.7  

for Douglas Fir in TL-direction. (densities: respectively 0.37 and 0.50; moisture content of 12 %). 

Thus, for  1.5
IcK 265 kN / m   is  

1.5
IIcK 7.7 265 2041 kN / m     in TL – direction. 

This agrees with measurements [1]. In RL-

direction this factor is 3.3 to 4.4. Thus, , when IIcK  

is the same as in the TL-direction, the strength in 

RL-direction is predicted to be a factor 1.7 to 2.3 

higher with respect to the TL-direction. This 

however applies at high crack velocities (“elastic” 

failure) and is also dependent on the site of the 

notch. At common loading rates a factor lower 

than: 410/260 = 1.6 is measured [1] and at lower 

[7],[1] cracking speeds, this strength factor is 

expected to be about 1 when fracture is in the 

“isotropic” middle lamella. It then thus is  

 

Fig. 2.3.4. Combined mode I-II fracture strength   
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independent of the TL and RL-direction according  to the local stiffness and rigidity values. To 

know the mean influence, it is necessary to analyze fracture strength data dependent on the density 

and the elastic constants of 6n . From the rate dependency of the strength follows an influence of 

viscous and viscoelastic processes. This has to be analyzed according to Deformation Kinetics 

theory [8]. A general problem is further the possible early instability of the mode I-test equipment. 

In that case constants should be compared with the related mode II data.  

Empirical verification of the above derived theory equation, eq.(2.3.18), which is a Coulomb 

equation, called Wu-equation for wood, is not only obtained by [6], but also by tests of [10], done at 

the TL-system on eastern red spruce at normal climate conditions using different kinds of test 

specimens. The usual finite element simulations provided the geometric correction factors, and the 

stress intensity factors. The lack of fit test was performed on these data, at the for wood usual 

variability, assuming the five different, often suggested failure equations of Table 2.1. The 

statistical lack of fit values in the table show, that only the Wu-failure criterion, the third equation 

of Table 2.1, cannot be rejected due to lack of fit. The Wu-equation is shown to fit also clear wood 

and timber strength data in [11] and [12], as expected from theory.   

 

Table 2.1. - Lack of fit values for different failure criteria [10] 

Failure criterion p-

value  

/ 1I IcK K    0.0001  

/ / 1I Ic II IIcK K K K   0.0001  

 
2

/ / 1I Ic II IIcK K K K   0.5629 

 
2

/ / 1I Ic II IIcK K K K   0.0784 

   
2 2

/ / 1I Ic II IIcK K K K   0.0001  

 

2.4. Remarks regarding crack propagation  
Because the mixed mode failure criterion shows that cracks tend to propagates in the direction 

perpendicular to greatest principal tangential tensile stress in the crack boundary, as shown in Fig. 

2.3.2 and 2.3.3, the following modes occur:   

In fig. 2.4.1-b, the mixed mode crack propagation starts at an angle with its plane (due to initial 

matrix failure), but, (due to the reinforcement), may bend back along the fractured zone. Stage b of  

this crack propagation is due to small-cracks merging in the fractured zone, which propagate to the  

 

  in glassy polymers  

Figure 2.4.1.– a) Crazing at the crack tip and:   b) Possible crack extension along the fractured zone  

 :  

macro-crack tip. For wood, stage b occurs in a parallel crack plane as e.g. given by Fig. 2.4.2. This 

skipping across fibers is a form of oblique crack extension in a zigzag way, jumping when the 

equilibrium crack length is reached for the unloading stress level. Real collinear shear crack 

extension does not exist because the tensile stress there is zero and then thus only plastic shear 

sliding is possible at a much higher ultimate shear stress. 
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Fig. 2.4.2 Scheme of Wu, of crack extension by skipping across fibers at pure shear loading,  

showing “mode” II failure to be a tensile failure outside the collinear plane of pure maximal shear 

stress. (This also can be regarded as a zig zag, small oblique angle, tensile crack propagation, in 

accordance with theory).  

 

For small- crack extension, collinear crack extension is possible by interference of tensile stresses, 

causing tensile failure in the weakest plane (along the grain) as is given by Fig. 2.4.3, by crack 

merging, where each small crack is propagating in the two directions towards the neighboring 

cracks. This is the principle of the small crack merging mechanism of [13], discussed in § 3.6.  

 

 
Fig. 2.4.3. Collinear small crack merging.  

 

Figure 2.4.4 explains why, in the mode II standard test, under shear loading, not a sliding mode II, 

but elastic, sliding unloading, occurs, after an opening mode I tensile failure.  

 

 
Fig. 2.4.4. Mode II standard test loading of the single end notch beam 

 

This ‘‘mode II’’ test is represented by case a + aꞌꞌ. If the sign of the lower reaction force V of this 

case is reversed and P = 0, the loading of the mode I, double cantilever beam (DCB) test is 

obtained, identical to loading case c with N = 0. In Fig. 2.4.4, case a + aꞌꞌ is split in case a and in 

case aꞌꞌ, as loading of the upper and the lower cantilever. Case a is identical to case aꞌ which is 

similar to end-notched beams discussed in [13], Chapter 6. This case behaves like the mode I 

fracture test as can be seen by loading case c. The loading near the crack tip, given by case a, can be 

seen as the result of superposition of the stresses of cases b and c, where the loading of case b is 

such, that the un-cracked state of the beam, case bꞌ, occurs. The loading of case c is such that the 

sum of cases b and c gives loading case a. Case c is the real crack problem and the critical value of 

strain energy release rate cG  can be found by calculating the differences of elastic strain energies 

between case aꞌ and bꞌ, the cracked and un-cracked system [13]. Case c shows the loading of the 

mode I – DCB-test by V and M, combined with shear loading by N and the energy release rate thus 

will be somewhat smaller (by this combination with N) than the value of the puce DCB-test. 

For the loading case aꞌꞌ, the same stresses occur as in case a, however with opposite directions of M 

and V with respect to those of case c, according to case cꞌꞌ , causing crack closure. To prevent that 

crack closure cꞌꞌ , and friction, dominate above crack opening c, the crack slit has to be filled with a 
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Teflon sheet. By superposition of cases c and cꞌꞌ , case c + cꞌꞌ of shear loading of pure mode II 

occurs, as crack problem due to the total loading. The normal load couple of 2N is just the amount 

to close the horizontal shift of both beam ends with respect to each other at that loading stage. This 

explains the applicability of the virtual crack closure (VCC-) technique. Because the upper 

cantilever is stronger for shear than the lower cantilever, because of higher compression 

perpendicular and along the grain (see fig. 5.1 and 5.2, for the, with compression parabolic 

increasing shear strength), mechanism c will dominate above cꞌꞌ, when the lower cantilever start to 

flow in shear or fails at the support. Thus mode I, case c, tensile failure occurs.  

 

2.5. Remarks regarding the empirical  confirmation  
Measurements are given in Fig. 2.3.4. The points are mean values of series of 6 or 8 specimens. The 

theoretical line eq.(2.3.10) is also the mean value of the data of Wu on extended material properties 

Only the Australian sawn notch data deviate from this parabolic line and lie between eq.(2.3.10) 

and the theoretical lower bound eq.(2.3.16). This is explained by the theory by a too high IIcK / IcK -

ratio, indicating a manufacturing mistake. Using general mean values of the constants, the 

prediction that IIcK / IcK   21 12 xy y2 2 (G / E )      agrees with the measurements. However, 

precise local values of the constants at the notches are not measurable and there is an influence of 

the loading rate and cracking speed. Thus safe lower bound values have to be used in practice.  

Fig. 2.3.4 shows that all measurements, including compression, are explained by the theory.  
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3. Softening- called yield drop, by hardening behavior  
 3.1 Introduction 
A derivation is given of the yield drop curve, the occurring stable part of the Griffith locus. It 

follows from the derivation that strain softening does not exist.  

For long over-critical initial crack lengths, the elastic crack closure energy is not equal, but less than 

the critical energy release rate and the clear wood ultimate stress criterion applies for the still intact, 

ultimate loaded clear wood material adjacent to the macro-crack. Thus micro-crack extension then 

is determining for failure.  

The derivation of yield drop is discussed and it is shown in § 3.4 that the area under the load-

displacement yield drop curve of e.g. Fig. 3.4.1, 3.4.2, 3.6 or 3.7, divided by the  crack area, is not 

the fracture energy, but the total external work on the specimen. The fracture energy follows from 

half this area under the loading curve, what is equal to the critical strain energy release rate at the 

start of yield drop, which is the start of macro-crack extension. For wood this correctly is applied 

for mode II, see Fig. 3.4.3, where the elastic part of stored energy is subtracted from the total 

applied energy, given by the loading curve, to get the right nominal fracture energy. For mode I 

however, wrongly the total area is regarded to be the fracture energy e.g. by fictitious crack models.  

 

3.2. Mode I apparent “softening” behavior, explained by “hardening” behavior 
Apparent softening- like yield drop, only exists for the nominal stress. Thus for the actual elastic 

stress far outside the fracture plane. The Griffith stress, eq.(3.2.8), is a nominal stress, acting on the 

section b∙t of Fig. 3.1. This actual stress, on the intact part of this specimen, outside the fracture 

plane, shows “softening- like” yield drop, following the Griffith locus, what thus is not strain 

softening (at failure) but is elastic unloading of intact, undamaged material, due to the reduction of 

intact, ultimate loaded, material in the fracture plane The actual stress at the fractured section shows 

hardening and quasi hardening by stress spreading and thus no softening as will be derived below. 

The same applies for the necked actual cross section area of a steel rod (and for reduced fracture 

area of other materials). Clearly the term strain softening has to be replaced by “elastic unloading”, 

occurring when the unloading damage process is faster than the loading rate by the constant strain 

rate test. Because of sufficient plasticity, limit analysis applies and linear elastic fracture mechanics 

can be applied up to the ultimate stress at the elastic-plastic boundary around the crack tip.  

The dissipation by micro cracking, plastic deformation and friction within this boundary, called 

fracture process zone, then is regarded as part of the fracture energy of the macro crack extension. 

Thus the limit analysis, lower bound, equilibrium method is applicable. 

When a specimen is loaded until just before the start of yield drop and then unloaded and reloaded, 

the behavior has become elastic-full plastic, and the real stress differs an internal equilibrium 

system with linear elastic loading stresses. Because limit analysis applies, based on virtual 

displacements, this internal equilibrium system and other initial 

stresses and displacements have no influence on the value of the 

ultimate load and should not be regarded. Therefore also, the Code 

calculations can be based on a reduced E-modulus, up to the ultimate 

state and therefore also replacement in e.g. [2] of 11/ E  by: the bad fit: 

  
0.5

11 22 22 11 12 66 11/ 2 / 2 / (2 )a a a a a a a    is not needed and therefore 

also the derivation below, of the yield drop curve of the fractured 

specimen, based on the effective E-modulus, is appropriate.  

In Fig. 3.1, a mode I, center notched test specimen is given with a 

length “l”, a width “b” and thickness “t”, loaded by a stress σ showing  

 

Figure 3.1 – Center notched specimen b x l   

snd thickness t, containing a flat crack of 2c. 
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a displacement increase δ of the loaded boundary due to a small crack extension. The work done by 

the constant external stress σ on this specimen, during this crack extension is equal to:  

σ∙b∙t∙δ = 2W = 2(σ∙b∙t∙δ/2) (3.2.1) 

This is twice the increase of the strain energy W of the specimen. Thus the other half of the external 

work, equal to the amount W, is the fracture energy, used for crack extension. Thus the fracture 

energy is equal to half the applied external energy which is equal to the strain energy increase W 

and follows, for the total crack length, from the difference of the strain energy of a body containing 

a crack and of the same body without a crack:  
2 2

2 2eff

blt blt W
E E

 
     (3.2.2) 

The fracture energy is also equal to the strain energy decrease at fixed grips conditions when δ = 0:  
c

c
W t vda




   = 2 2 /c t E    (3.2.3) 

where the last two terms give the strain energy to open (or to close) the flat elliptical crack of length 

2c and where “v” is the displacement of the crack surface in the direction of σ.   

From eq.(3.2.2) and eq.(3.2.3) follows that:   
2 2

2 2eff

blt blt
E E

 
   2 2 /c t E     (3.2.4) 

Thus the effective Young’s modulus of the specimen of Fig.3.1, containing a crack of 2c, is:  

21 2 /
eff

E
E

c bl



    (3.2.5) 

The energy equilibrium condition of the critical crack length is:  

 2 0cW G ct
c


 


   (3.2.6) 

where cG  is the fracture energy for the formation of the crack surface per unit crack area.  

With W of eq.(3.2.2) or of eq.(3.2.3), eq.(3.2.6) becomes:  
2 2

2 0c

c t
G ct

c E

 
  

  
,   or:   

2 2 22
1 2 0

2 2
c

blt c blt
G ct

c E bl E

    
     

   
    (3.2.7)  

giving both the nominal Griffith strength:  

c
g

G E

c



    (3.2.8) 

which is the actual stress /P bt  outside the fractured section on the intact area bt of the specimen of 

Fig. 3.1. The, for strength problems, necessary real, actual stress (expressed in the nominal stress, as 

wanted) in the weakest actual cross section (ligament) with width:  b – 2c, where fracture occurs, is:  

1

2 ( / ) (1 2 / )

c c
r

G E G Eb

c b c b c b c b


 
   

  
   (3.2.9) 

and for a damage process and critical state, of the initial crack, applies: / 0r c   , which is a 

minimum energy principle of the external applied energy. Thus applies for fracture: 

   
6 / 1

0
( / ) 2 / 1 2 /

r cG E c b

c b b c b c b





 
  

  
,   (3.2.10) 

This applies when c/b   1/6 = 0.167, what always is the case for yield drop at fracture.   

For larger initial cracks, the geometrical correction factor Y of § 10.2, should be accounted. Then: 

21 1
1 (2 / )

2 ( / ) (1 2 / )

c c
r

G E b G E
c b

Y c b c b c b c b


 
    

  

(1 2 / )

( / ) (1 2 / )

c
c bG E

b c b c b


 

 
,    
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and: 0
( / )

r

c b





 gives: 

2

2
2 2 0.5 0

c c

b b
    , or: 

2 1
0.207

2

c

b


    (3.2.11)  

This applies for yield drop, because the critical value of eq.(3.3.3): / 1/ 6 0.23cc b   , is higher.   

The real actual stress 
a

  increases, with the increase of the crack length, and “hardening” behavior 

characterizes the critical stress (not softening). However, a maximal ultimate value for this clear 

wood strength applies. Thus therefore, a constant maximal value of the energy release rate is basic 

for the Griffith theory. Then the nominal stress follows the Griffith locus, eq.(3.3.2) (see Fig. 3.6), 

as failure condition, which also is the condition of no damage acceleration. (Instable failure will  

not occur, when the testing rig is sufficient stiff). The stress for e.g. critical crack length of  c/b = 

1/6, of eq.(3.2.10) is:   /
c c

G E c   / ( / 6)
c

G E b      and the actual stress at the fracture plane is:   

  
,

/ ( / 6) / / 3
c a c

G E b b b b    1.5 / ( / 6)
c

G E b .     Thus is 1.5 times the nominal Griffith stress. 

Thus, macro crack extension demands hardening (not softening); thus demands an increase of the 

tensile strength. The possible tensile strength increase, follows from the exact stress spreading 

theory of [4]. Although derived for local compression, the sign of the shear stresses may be 

reversed and the same spreading rules apply for tension. For c/b = 1/6, according to Fig. 3.1, there is 

a spreading of the stress on b − 2c = 4c solid material to the full width:  b = 6c. Thus the tensile 

strength is: 1.1 6 / 4 1.35m m    , thus 1.35 times the uniaxial tensile strength m . The nominal, 

fully spread, stress then is 1.1 4 / 6 0.9m m     . Thus 1.5 1.35g m   or: 0.9g m  , 

thus:    6 / 0.9c mG E b  . (3.2.12)  

In the same way, when the crack extends after twice this initial length, to: c/b = 1/3, then the actual 

stress becomes 3 times the Griffith stress, while the strength is 1.9 m , and the fully spread stress 

would be 0.64∙ m . Thus 23 1.9g m  , or 2 0.63g m  , or:  

   3 / 0.63c mG E b   →    6 / 2 0.63 0.9c m mG E b       (3.2.13) 

From eq.(3.2.12) and eq.(3.2.13) follows that the nominal stress intensity cG  (fracture energy) does 

not decrease at the start of crack extension. This does occur when the maximal spreading is reached. 

Then the Griffith law for macro crack extension does not apply anymore and thus is not able to 

explain fracture at low stresses. This is the case below the factor 0.57 yield drop unloading level 

(see § 3.5). Thus total fracture can not be due to single macro crack extension. Necessary is clear 

wood fracture, causing micro crack extension towards the macro crack tip, to explain macro crack 

extension at low nominal stresses (see § 3.3). Because unloading, outside the fracture plane, follows 

the stiffness and strength decrease of the specimen, due to crack extension, the mathematical 

expression of this influence has to be discussed in the next § 3.3. 

 

3.3. The “softening”- called yield drop curve  
Yield drop, (wrongly called softening) is only possible for nominal stresses, thus for the stress 

outside the fracture plane and should be described by the limit analysis damage theory of 

Deformation Kinetics of [5]. But an alternative description is possible by the Griffith theory. The 

critical strain, of specimen of Fig.3.1, at which the initial crack will grow is, according to eq.(3.2.5): 

 2/ 1 2 / /g g eff gE c bl E           (3.3.1)  

Substitution of 2/c c gc G E  , of the ultimate state, according to eq.(3.2.8), gives:   

2 3/ 2 /g g c gE G E bl         (3.3.2) 

This is the equation of critical (metastable) equilibrium states, representing the yield drop curve due 

to the Griffith stress eq.(3.2.8), which is the actual stress on the intact part of the specimen, outside 

the fracture plane, (and is the nominal stress at the fracture plane). It is shown by the dynamics of 

crack propagation that the velocity of crack propagation is zero at the initial critical crack length 
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and that the Griffith relation, eq.(3.2.8), is the condition for zero acceleration of crack extension. 

Thus the crack of Griffith length is in unstable equilibrium but does not propagate. (For crack 

propagation a slightly higher stress is necessary).  

The “softening” called yield drop curve, eq.(3.3.2), is called “Griffith locus” and has a vertical 

tangent / 0g gd d   , occurring at a crack length of: 

/ 6cc bl  ,       (3.3.3)  

which is, with 
c  according to  eq.(3.3.5), the top of the curve of Fig. 3.2. The effective length l of 

the specimen of fig. 3.1, is the St. Venant distance, thus l ≈ b. Thus 2 / 6 0.23cc b b  .  

(For small initial cracks is l ≈ 2c and 0.1cc b < b/6, thus acting as clear wood fracture).  

Due to the steepness of the curve at the top, the first yield drop already may start earlier at: 

0.57̈∙0.23b = 0.13b, according to eq.(3.5.3). The locus below this top has a negative slope 

(following eq.(3.3.6)), as should be at unloading, because a positive slope, represents crack 

recovery, what is not possible. Eq.(3.3.2) shows, that at a positive damage rate d g  and negative 

stress  rate, d g  that then necessarily g c  . Thus 
c is necessarily the top of the yield drop curve. 

For a distribution of (small) cracks applies, that when their distance is higher than 2 times the St. 

Venant distance, the strength of the plate is about the same as when 

each small crack was alone in the plate. Thus for a critical distribution 

of small cracks in a repeating pattern, b and l in eq.(3.3.3) are the St 

Venant crack distances and the critical crack distance for extension 

therefore is about 2.2 times the crack length, because when b ≈ 

2.2∙(2
cc ) and: l ≈ 2.2∙(2

cc ), then  2bl b 219 cc 26 cc , according to 

eq.(3.3.3). This also applies for a single crack, or extended small cracks 

after merging to one crack, because the stress flow around the crack 

needs the St Venant’s distance below and above the crack to be on full 

stress, to be able to extend the, there present, small cracks further. Thus 

the critical crack density, for the start of yield drop, is reached, when  

 

Fig. 3.2.- Yield drop curve according to eq.(3.3.2) for specimens of Fig. 3.1 or Fig. 3.5.  

 

the intermediate crack distance is about the crack length. This critical distance also is predicted by 

Deformation Kinetics, discussed in § 4.5, and is used in § 3.6 to explain yield drop by small-crack 

propagation in clear wood, at the fracture plane (the ligament). Thus, when the intermediate crack 

distance is the St Venant distance, the stress and strength is about the same as if the crack is alone in 

an infinite plate. This critical density is given by row A of fig. 3.8, what determines the critical 

crack density, because a lower crack distance (e.g. due to crack extension) then reduces the strength 

and starts yield drop. According to eq.(3.3.3), the yield drop line, eq.(3.3.2), can be written:  
4

4
1

3

g c
g

gE

 




 
   

 

,   (3.3.4)  

where: /c c cEG c      (3.3.5)  

is the ultimate load with cc  according to eq.(3.3.3). The negative slope of the “stable” part of the 

Griffith locus, being the yield drop line, then is:   

4

4
1

g

cg

g

E






 




     (3.3.6)  

Vertical yield drop occurs at the top at g c  , and the strain then is: ( / ) (1 1/ 3)gc c E     and 
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eq.(3.3.4) becomes: 
3

3
0.75

3

g g c

gc c g

  

  

 
    

 

,     (3.3.7)  

More in general eq.(3.3.4) can be written, when related to a chosen stress level
1g : 

4 4

4 4

1 1 1

1 / 3

1 / 3

g g c g

g g c g

   

   


 


     (3.3.8)  

When the occurring yield drop curve starts to differ from the Griffith locus, 
c  decreases, causing a 

steeper decline of the curve. This failure by a small-crack merging mechanism is discussed in § 3.6. 

To measure the fracture energy as area under the yield drop curve, the 

displacement of the loading jack due to the mean deformation of the 

specimen has to be known. This can not be obtained by measuring the 

gage displacement over a crack (see Fig. 3.3), because it is not known 

what then is measured and this local unloading around the open crack is 

mainly proportional to the crack length itself, and to possible rotation and 

is not simply related to the constant ultimate stress state of the ligament 

and to the decreasing external loading.  

 

Fig. 3.3. Measuring nonsense data at gage 2, (see[6])   

 

3.4. Fracture energy as area under the yield drop curve  
The basic theory of the energy method, leading to eq.(3.2.1) and eq.(3.2.2), is of course confirmed 

by the loading curve (Fig. 3.4.1 and 3.4.2). When a test specimen is mechanical conditioned, the 

effective stiffness is obtained, given e.g. by the lines OA and OC in Fig. 3.4.1 and 3.4.2. In Fig. 

3.4.1, the area OAB, written as OABA , is the strain energy of the specimen of Fig. 3.1 with a central 

crack or with two side cracks according to Fig. 3.5  (or  Fig. 3.2) with a width “b”, length “l” and 

thickness “t”, loaded to the stress  . During the quasi static crack extension from B to D in Fig. 

3.4.1, the constant external load   does work on the specimen of: BD BDb t l b t            

ABDCA , where BD  is the strain increase due to the cracking and BD  the corresponding 

displacement. The strain energy after the crack extension is OCDA  and the strain energy increase by 

the crack extension thus is in Fig. 3.4.1:   

OCDA  - OABA  = OCDA  - OCBA  =  CBDA  = / 2ABDCA . Thus half of the external energy: 

/ 2ABDC BDA b t      is the amount of increase of the strain energy due to the elongation by  , 

and the other half thus is the fracture energy which is equal to this increase of strain energy. The 

same follows at unloading at yield drop. Because every point of the yield drop curve gives the 

Griffith strength, which decreases with increasing crack length, unloading is necessary to maintain 

equilibrium. The fracture with unloading step AC in Fig. 3.4.2 is energetic equivalent to the  

unloading steps AE and FC and the fracturing step EF at constant stress EB = FD = (AB + DC)/2. 

Thus ABDCA  = EBDFA . Identical to the first case of Fig. 3.4.1, the increase in strain energy due to 

crack extension is: 0.5 0.5ODF OBE ODF OBF BFD EBDF ABDCA A A A A A A        ,  

equal to half the work done by the external stresses during crack propagation and thus also equal to 

the other half, the work of crack extension. It thus is shown that half the area under the load- 

displacement curve represents the fracture energy. For mode II, only line OACO in Fig. 3.4.1 is 

measured and OACA  is regarded to be the fracture energy. Because OAC BAC ABDCA A 0.5 A   , 

thus equal to half the area under the load displacement curve, the right value is measured and mode 

II data needs no correction. Because eq.(3.2.2) is based on the total crack length and the strength is 

a Griffith stress, the initial value 2c of the crack length has to be accounted and   and cG  has to be 
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related to the whole crack length, including the initial value 2c, and thus should be related to the 

whole specimen width b and not to the reduced width of the fracture plane: b – 2c as is done now 

and leads to an energy, dependent on the choice of the initial value of 2c. Only for the Griffith 

stress, the energy method of § 6 and §7 applies for initial failure, based on the energy difference of 

the cracked and un-cracked state. This has to be corrected together with the correction by a factor 2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.1.- Stress – displacement curve Figure 3.4.2 -  Descending branch of the stress –  

for tension, of the specimen of Fig. 3.5.                         displacement curve of Fig. 3.4.1. 

 

 

 

 

 

Fig. 3.4.3. 

 

 

 

 

 

 

Fig. 3.4.3. Mode II fracture energy   (and similarly start mode I)    Area: OAB = CAB = ABCD/2  

 

for the mode I fracture energy cG . A third correction occurs when c  of eq.(3.3.4) changes. The 

decrease of the mean cG -value, starting half way the yield drop stage, shows the decrease of the 

nominal value of the constant cG , due to the formation of an overcritical crack length by the 

decrease of intact area at the fracture plane. This is discussed in § 3.6.  

In [7], not ABDCA /2 is regarded as fracture energy but the amount OACOA  of Fig 3.4.2. This is the 

irreversible energy of a loading cycle by a crack increment in the specimen. This consists of: 

OEAOA + OEFOA - OFCOA =  OEFOA = 0.5∙ BEFDA = 0.5∙ ABDCA , thus again half the area under the load-

displacement curve. As discussed in [1], the measurements of [7] indicate the presence of a 

mechanosorptive process, acting in the whole specimen. It thus should be realized, that the area 

under the loading curve as: OACOA  gives no separate information on the fracture process alone, of 

the still intact part of the fracture plane. Other viscoelastic and visco-plastic processes will 

dominate, what has to be corrected by deformation kinetics [5] by determination of the activation 

energy of all acting processes. After correction, as first lower bound solution, the fracture energy 

can be regarded to be constant per unit crack length and then the area below the yield drop curve is 
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a measure of the amount of intact ultimate loaded material at the increasing crack extension.   

 

3.5. Explanation of mode I data and the empirical yield drop curve  
The measurements of [3] are complete by measuring the whole loading and yield drop curve and 

using the compact tension tests as control, being a control by the different loading case. 

The graphs of [3], Fig. 3.6 and 3.7, are the result of tension tests on the specimen of Fig. 3.5. 

The length of the specimen was l = 3 mm, the width and thickness: b = t = 20 mm and the notch 

length 2c = 2x5 = 10 mm with a notch width of 0.5 mm. 

In figures 3.6 and 3.7, the measured stress-displacement is given together with the lines 1 and 2  

according to the Griffith locus eq.(3.3.7). The strain 
g  follows from the displacements at the x-axis 

of the figures divided through 3 mm, the measuring length and length of the specimen. Because of 

the small length of 3 mm, not the whole width b of the specimen is 

active. Assuming a possible spreading of: 1.2:1, through the 

thickness of 1.25 mm above and below the side notches, the 

working width effb  is equal to the length of the fracture plane plus 2 

times 1.2 x 1.25 or: 
effb  = 10 + 3 = 13 mm. 

Thus the notch lengths in Fig. 3.5 should be regarded to be 1.5 mm  

in stead of 5 mm. The stresses in the figures 3.6 and 3.7 of [3], are  

related to the length of the fracture plane and not to the width effb ,  

Figure 3.5 - Geometry of            according to the nominal Griffith stress. Thus the actual stresses  

                 specimens [3]             have to be reduced by a factor 10/13 = 0.77. The standard compact   

 tension tests of [3] showed a stress intensity IcK  of: 330 3/ 2kNm .  

This value also should follow from the area under the yield drop curve of that compact tension test. 

When half the area of that diagram is taken to be the fracture energy, in stead of the total area, then 

IcK , mentioned in [3], indeed is corrected to the right value of: 467/√2 = 330 3/ 2kNm  giving an 

empirical verification of the theory. 

Regarding the short double edge notched specimens of Fig. 3.5, the measured E-modulus should be 

related to the effective width of 13 mm in stead of the width of 10 mm of the fracture plane and  

therefore is E = 700x10/13 = 700x0.77 = 539 MPa. The critical energy release rate then is:  
2 2/ 330 / 539 200c IcG K E    N/m  (3.5.1) 

The measured value of cG  from the area under the stress-displacement curve is given in [3] to be 

515 N/m. But, because half this area should have been taken and this value is wrongly related to the 

length of the fracture plane in stead of on effb , the corrected value is:  

cG  1/2x515x0.77 = 200 N/m, as found above, eq.(3.5.1), giving again an empirical verification of 

the theory, now by the tests on the short double edge notched specimens.  

As shown before, the yield drop curve of Fig. 3.6 has (as Fig.3.2) a vertical tangent at the top 

/g gd d   . The critical crack length for yield drop: / 6cc bl   according to eq.(3.3.3) is: 

cc  3 3( ) / (6 ) (13 3) / (6 ) 10 1.4 10 1.4effb l           mm   (3.5.2)  

This confirms the mentioned initial St. Venant crack length to be as small as about 1.5 mm.  

In Fig. 3.6, at the Griffith maximal stress of (0.77)∙7 = 5.39 MPa, is: IcK c    or:  

IcK  = 5.39∙
31.4 10   = 0.36 3/ 2MNm , ( > 0.33 3/ 2MNm ), for this strong specimen.  

The strength level above 4 (to 4.6) Mpa, given by Fig. 3.7, is measured in 3 of the 10 specimens of  

the discussed series: T1309/2309 of [3] and Fig. 3.6, shows the highest level, thus the total curve, as 

given by Fig. 3.2, indicating that this strength of the fracture plane, according to crack-pattern A of 

fig. 3.8, was determining for yield drop. The other specimens of this series did show lower strength 
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values than ~ 4 MPa, as applies for further unloading due to already extended small cracks. At § 3.3 

and § 4.5 is shown that for the critical small crack density of eq.(3.3.3), the crack distance is about 

the crack length, as given by row A of Fig. 3.8. Line 1 of Fig. 3.6 gives the primary crack extension, 

eq.(3.3.7), by this critical crack density. Curve 1 levels off from the measurements at 4   Mpa, 

where the next process starts, given by line 2 of Fig. 2.6. This thus happens when the crack length 

has become about 3 times the initial critical value 
c ,0c , because then:   

,03

c
g

c

EG

c



   0.57∙7 =∙4 MPa    (3.5.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 - Stress - displacement of                   Figure 3.7 - Stress - displacement 

       specimen T 1409 of [3].                                        of specimen T 1509 of [3]  

 

This 3 times larger crack length is given by crack row B of Fig. 3.8. The top value c  of the first 

process on row A, is c = 7 Mpa, for all values of g  between 4 and 7 Mpa. The top value of the 

second process B on 3 c,0c  cracks, is: c = 4 MPa. This process ends, where cracks of 7 c,0c  lengths 

remain, according to row C of Fig. 3.8. Thus when:  

1 1
7 0.378 7 2.65

7 7 7

c c
g

c c

EG EG

c c


 
       Mpa   (3.5.4)  

This is where line 2 of Fig. 3.6 levels off from the data line. This stress is equal to top value c  of 

the next process C, on 7 c,0c  cracks, given below line 2 in Fig. 3.6. This ends at: 

(1/ 15) 7 0.258 7 1.81     Mpa, where the process on 15 c,0c  starts. However, processes towards 

the longer cracks of 15, 31 and 63 c,0c  are not distinct and it is probable that, due to the high actual 

stress, failure may occur at any point of the still intact part of the ligament.  

The Griffith law is apparently paradoxical. At a certain stress level there is enough energy to 

fracture a critical crack length of 2c. But at crack extension the stress level lowers, thus there is not 

enough energy to extent the longer crack. Thus initial and further crack extension is impossible. The 

reason of this paradox is that nominal stresses are regarded, while fracture laws only can apply in 

real-, thus in actual stresses. After the first process of row A, half of the intact material is fractured, 

but the stress level is not halved, but 0.57 times lower. The next steps to rows B and C. show 

respectively stress levels of 0.378 and 0.258, thus more than 0.25 and 0.125 needed to fracture the 

remaining 0.25 and 0.125 intact material. The proof of the increasing sufficient stress level for 

further fracture is given by eq.(3.2.10), because not only the first derivative but also the second 

derivative is positive for when c/b > 1/6. An alternative description of the process, is to regard 

micro-crack extension in the high loaded clear wood parts of 2c lengths (see fig. 3.8). This happens 

from the start to the end of the process. Thus to regard clear wood failure. Although, weakest 



Exact Fracture Mechanics theory 

 

23 

 

material will fail first, the clear wood strength spreading is not high enough to explain the high 

apparent hardening. The overcritical crack length, after first yield drop from row A to row B, shows 

empirically a too low IcK - value, showing that then crack closure energy is lower than the bond 

breaking energy. Thus then remains, that failure by post-critical crack lengths is due to ultimate, 

uniaxial, clear wood failure stress, thus by micro-cracking. This micro process is able to satisfy 

eq.(3.3.3) by the high stress and thus to reach the critical energy release rate. This is discussed 

further below. It thus is shown, that the Griffith yield drop equation, combined with the crack 

merging model, precisely explains the data of strong specimens. The data of the less strong 

specimens, given by Fig. 4.7, show instability of process A, (of fig. 3.8) due to the steep slope near 

the top of Fig. 4.2. (This also explains the high variability of the data, found in [3]). Line 1 of Fig. 

4.7 is the same as line 2 of Fig. 4.6, and can be chosen to level off at about 2.2 MPa, in accordance 

with the uniaxial strength of the still intact area of the ligament, which is half the area at 4.4 MPa, 

showing again that an ultimate stress criterion is determining and not a nominal Griffith strength 

criterion for long (overcritical) small-cracks (thus at low nominal stress). The optimal crack 

merging mechanism, clearly noticeable at strong specimens, is a chosen lower bound equilibrium 

system of limit analysis processes, which precisely follow the measured data (see also § 3.6).  

 

3.6. Crack merging mechanism   
According to deformation kinetics § 4.5, macro crack extension is preceded by the formation of a 

high density of small cracks, providing a mechanism with the least loss of strength at the highest 

dissipation. Because for a distribution of small cracks applies, that when the intermediate crack 

distance is higher than 2 times the St. Venant distance, the strength of the plate is about the same as 

when only one, thus when each small crack alone, was in the plate. The critical, maximal small 

crack density thus is determined by the St Venant distance. The critical intermediate small crack 

distance of a fracture process in “clear” wood, in the fracture plane, thus is about equal to the crack 

length, as given in scheme A of fig. 3.8. In § 3.3, theoretically, a crack distance of 2.2 times the 

crack length c is found, what for simplicity of the model is rounded down to 2 in Fig. 3.8.  

 

 2c    2c    2c    2c    2c    2c    2c    2c    2c    2c    2c    2c    2c    2c    2c  .  A 

 

           6c           2c             6c            2c           6c             2c           6c          . B 

 

                        14c                            2c                          14c                         . C   

 

Fig. 3.8. Small crack merging  

 

As shown in § 3.5, eq.(3.3.7) applies for yield drop, going from row A to row B, what ends when 

the stress reaches the value according to eq.(3.5.3). Then, going from row B to row C, again 

eq.(3.3.7) applies until the stress reaches the value of eq.(3.5.4). The crack merging mechanism thus 

can be seen as correction and extension of the Griffith law.  

For the small cracks, the critical crack length according to eq.(3.3.3) is: 

0 0 0/ 6 2.2 (2 ) 2.2 (2 ) / (6 ) 1.0cc lb c c c         ,   (3.6.1)  

for the specimen with row A. The distance l between the rows, above each other, is 2.2 times the 

crack length, being the Saint-Venant distance for building up full stress again behind a crack, to be 

able to form a new crack. Thus l = b = 2.2∙2c for row A, and l = b = 2.2∙6c in row B, and l = b = 

2.2∙14c for row C. Thus when crack pairs of row A join together, a double-crack length of 6c 

occurs. The critical crack length thus is for row B: 

 
22

0 0 0 0/ 6 2.2 6 2.2 6 / (6 ) 0.5 6 0.5 6 3cc lb c c c c             .   (3.6.2)  

Next a double-crack length of 14c is formed as row C and then 30c, etc. However, for very long 

cracks, it is more probable that random failure of the ultimate loaded, remaining intact clear wood 
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parts of 2c length of rows A, B or C are determining for failure. Thus micro crack formation and 

propagation in the remaining high loaded intact, clear wood, part of the ligament is determining. 

This determining clear wood failure, also applies from the beginning (as discussed in e.g. § 3.7), so 

that fracture always is due to the same micro crack extension. This damage process acts in all these 

parts at the same time during the whole fracture process. Thus, for the whole fracture process, from 

the beginning to full separation, may apply, that micro-cracking in the intact part ( 2 )b c of Fig. 

3.1, of the ligament is determining, and that the concentration is not determined by the merged 

macro crack length: / 6cc lb   = 0.23b, but by the merged, clear wood, micro crack length of: 

2' ( 2 ) / 6cc b c    0.23 ( 2 )b c   .    (3.6.3)  

For every successive process applies optimal, that every crack merges with one neighbor by 

extension at one side over a distance of 1
0c , leading to halving of the solid area of the ligament, and 

to an increase of the crack length by:  

1 02 2 2 2n nc c c    , giving 1 02 6c c  and 2 1 0 02 2 2 2 14c c c c    .  (3.6.4)  

The increase of the crack length is: 1 0(2 ) ' 2 2 2 2n n nc c c c c     .  (3.6.5)  

Including the initial crack length of 2 0c , the increase of the total crack length is: 

1 0(2 ) 2 2 2 2n n nc c c c c     .    (3.6.6)  

More general for all merging cracks at any distance during time t  this is:  

1( )c c t        (3.6.7)  

and as the determining damage deformation kinetics [5] equation this is (see § 5, eq.5.3):  

2 0/ exp( )dc dt c    ,    (3.6.8) 

when the initial site concentration 0c  is high, (zero-order reaction) as applies for row A of Fig. 3.  

This equation can be written: ln( ) ln( ) vc C   , or, because 0v  = n, is constant, independent of 

stress, due to the time stress equivalence, [5], is:   

0 0

1
1 ln( )v

v

c

n c




      (3.6.9) 

showing that the combined Griffith – crack-merging model is identical to common damage  

behavior. Fracture is caused by accumulation of broken bonds, thus follows a thermal activated  

process [5], as also applies for the following micro-crack formation and large cracks formation due 

to coalescence of micro-cracks, (in a coupled process). Normally, when no large cracks are present, 

micro-cracks are formed randomly through the loaded body independently of one another. When 

the critical density is reached, coalescence and initial crack formation occurs. However, when the 

loaded body contains an initial crack, micro-cracks formation occurs in the vicinity of the crack tip 

(due to the high stress). Then the density of micro-cracks does not increase, outside this region 

where the micro-crack joins the larger crack, at formation, as part of the crack merging process.  

The kinetics, however, shows the same behavior as for clear wood, indicating that always the same 

micro-crack propagation is determining. As shown in [5], always two coupled processes act, 

showing the same time-temperature and the same time-stress equivalence of both. (A high 

concentration of micro-cracks delivers the sites for the low concentration of macro-cracks). The 

reaction thus is autocatalytic, what means that one of the reaction products is also reactant and 

therefore a catalyst in the coupled reaction. The mode I notched specimen, discussed here, shows 

the coupled low concentration reaction of the macro-crack extension, by its property of a strong 

yield drop behavior of the nominal stress. The coupled processes occur for the crack merging 

processes, where the initial crack length is the reactant and the reaction product is the newly formed 

crack length what also applies for macro-crack extension due to the micro-crack merging process. 

The numerous small-cracks, growing towards each other and to the macro notch, provide the site 

for the macro crack to grow as coupled second low-concentration reaction process. The kinetics of 

this bond breaking process is discussed in [5].   
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3 7. Mode II yield drop behavior 
As shown before, for mode I, yield drop occurs when the rate of the damage process is faster than 

the rate of loading in a constant strain rate test. This causes unloading, what has nothing to do with 

softening behavior. Analysis of tests on overcritical crack lengths is necessary to know properties of 

yield drop behavior. Therefore first, in paragraph 3.7.1, a prediction of the mode II critical crack 

length is discussed. This critical length causes the start of yield drop, thus represents the top of the 

yield drop curve.   

 

3.7.1. Derivation of the mode II critical crack length for yield drop 
Analogous to the mode I derivation in paragraph 3.2, is the fracture energy equal to the strain 

energy increase W:  

   2 22 1 2 1

2 2eff

blt blt W
E E

    
  ,    (3.7.1.1) 

and is, analogues to eq.(3.2.3) and eq.(3.2.2):  

W   2 2 2 2 2( ) / /c t E c t E     ,    (3.7.1.2) 

for pure shear. Thus:  

   2 2

2 22 1 2 1
/

2 2eff

blt blt c t E
E E

   


 
      (3.7.1.3) 

giving:          
 21 / 1

eff

E
E

c bl 


 
      (3.7.1.4)  

The Griffith stress g follows from:  

  0cW G ct
c


 


, or: 

2 2

0c

c t
G ct

c E

 
  

  
; or: 

2

c
g

G E

c



  or: 2/ (2 )c cc G E   (3.7.1.5) 

Substitution of 2/ (2 )c cc G E   into:  / 2 1 /eff effG E       gives:   

        

 

2 2

2 2

2 1 1 / 12 1 2 1 ( )
(1 )

(2 ) 1

c

eff

c bl G E

E E E bl

       


 

   
   


  (3.7.1.6) 

and the top of the yield drop curve follows, as for mode I, from: 0
d

d




 , giving:  

  2

4

2 1 3
0

2

cG E

E bl



 


     or:   

 1 4 / 3

c c

c

c

G E G E

cbl


 

 



. Thus:  

 4 1 / 3 / 0.5 0.62 0.785cc bl bl bl bl          (3.7.1.7) 

This value of cc  is applied as ca  in paragraph 3.7.2. 

 

3.7.2. Mode II fracture strength criterion 
In [8], [9], results of mode II tests, called asymmetric four point bending tests, are given (see Fig. 

3.9), applied on very long over-critical initial crack lengths, which clearly represent an identical 

state of a former yield drop stage, because the measured IIcK -values were a factor 2.5 to 4 lower 

than normal thus much lower than the control tests on standard “single edge notched beam” test-

specimens. The, by the numerical VCC- test, found, too low, value of IIcG  is not the critical energy 

release rate, but simply the elastic energy for elastic crack closure, (per unit crack length) of the 

existing very long overcritical crack length, which closure energy, per unit crack length, is lower 

than the apparent surface energy. In [8], [9], is stated that the compliance method delivers identical 

values of IIcG  as follow from the VCC- method. The compliance method therefore wrongly gets 

crack geometry factors,  /f a W , identical to those of the VCC- method. This of course can not be 
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right.  /f a W  thus is nothing more than an empirical coupling factor. Because of the zero moment 

in the middle of the beam, at the location of the cracked, glued-in, specimen (see Fig. 3.9), only 

shear stress loading and energy should be regarded as also follows from the VCC-method.  

Starting point in [8],[9] is the Griffith eq.(3.7.2.1) giving:  

   /IIc c i IIcK a f a W EG    ,     (3.7.2.1) 

In this equation IIcG  is found by the crack closure method; 
c , the nominal critical shear stress, is 

measured; ia , the initial crack length, is wrongly regarded to be the critical crack length and 

 /f a W  connects empirically 
c , ia , and IIcG . The nominal eq.(3.7.2.1) has to be corrected for the 

real critical 
ca  and actual stress ,a c  values which apply at the fracture site. Thus: 

  2 2

, , , ,/ ( / )( / )a c c IIc c i a c c IIa c IIa ca f a W EG a a EG K       ,    or: 

,

1

,

( / )
IIa c

c

a c

K
a f a W C


    (constant)     (3.7.2.2)  

where ,a c  is the actual ultimate shear stress and ,IIa cK  the real critical value of the stress intensity at 

the critical initial crack length 
ca . 

1C  is only dependent on dimensions and stiffness factors of the 

specimen. For instance, eq.(6.7), which is based on a compliance method for only shear loading and 

shear deformation, shows    2

1 ,/ 0.27 ( ) /IIc a cC K h E G       ,  (3.7.2.3) 

which is constant, independent of the crack length h . The common empirical estimation in 

[8],[9], wrongly based on nominal stress and on initial crack lengths ia  in stead of critical crack 

lengths 
ca , resulted in a not constant 

1C , but on a strong dependence of 
1C  on the crack length 

/a W  which therefor was a factor 2 higher at /a W = 0.9, with respect to the value at /a W = 0.7. 

The found, factors 2.5 to 4 too low, not critical, not constant, values of cG  are mainly due to the 

assumption that the overcritical crack length of /a W = 0.7, 0.8, and 0.9, are the right initial critical 

crack lengths of the Griffith theory. According to fig.12 of [9], there is no difference (by volume 

effect) between the data for W = 40 and 20 mm, thus in the following mean data values of both are 

regarded. This is necessary because the measured values of c , dependent on W, are not published 

in [8], [9]. Because the applied initial crack length is overcritical, the clear wood strength, thus 

micro crack extension, is determining in the still available intact area of: ( )W a  ( )W a , adjacent 

to the long (overcritical) initial cracks ia . Then the equivalent merged, critical macro-crack length 

according to eq.(3.3.3) is, (for a constant W in all tests):    

 0.78 0.78 (1 / ) (1 / ) 0.78 (1 / )ca bl W a W W a W W a W         ,   (3.7.2.4)  

Thus 1C  according to eq.(3.7.2.2), is, for respectively:   

/ia W = 0.7: ( / )ca f a W   2.46 (1 / )W a W  ( / )f a W 2.46 0.3 1.0 0.85W W        (3.7.2.5)  

/ia W = 0.8:  ( / )ca f a W   2.46 (1 / )W a W  ( / )f a W 2.46 0.2 1.2 0.84W W       (3.7.2.6) 

/ia W  = 0.9: ( / )ca f a W   2.46 (1 / )W a W  ( / )f a W 2.46 0.1 1.67 0.83W W      (3.7.2.7) 

giving the necessary constant value of 1C  of eq.(3.7.2.2), for shear loading. The equations show that 

only eq.(3.7.2.5) gives the right value of ca  because ( / ) 1f a W  . Therefore the smaller fracture 

planes need correction factors (respectively of 1.2 and 1.67) to obtain the same determining 

ultimate shear strength, given by eq.(3.7.2.11) to eq.(3.7.2.13). Therefore is:  

ca 
2

,0( ( / ))ca f a W   (3.7.2.8)  

Thus also is shown that not the initial crack length is critical, but the actual shear strength is 

determining for yield drop. The actual stress of actual, still intact material, follows from the 

nominal Griffith stress, corrected by a factor:  /W W a . This stress is determining for all clear 

wood failure. It thus is necessary that the so found actual clear wood shear strength is the same for 
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the above 3 overcritical cases. Thus, similar to eq.(3.2.9), eq.(3.7.2.1) can be written:  

/

( / ) (1 / ) ( / ) / (1 / ) ( / )

II II II
u

K W K K W

W aa f a W a a W f a W a W a W f a W




 
   

      
   (3.7.2.9) 

or:      
/ (1 / ) ( / )

II
u

K
W

a W a W f a W
  

  
   (3.7.2.10) 

This is constant independent of /a W  because not the crack closure value of 
IIcK of: 0.79, 0.71 and 

0.52 are determining in this case, but the ultimate shear stress, which is as: u W   equal to:  

For / 0.7a W  :  
/ (1 / ) ( / )

IIK

a W a W f a W


  

0.79
3.2

0.7 0.3 1


 
  (3.7.2.11) 

For / 0.8a W  :  
/ (1 / ) ( / )

IIK

a W a W f a W


  

0.71
3.3

0.8 0.2 1.2


 
  (3.7.2.12) 

For / 0.9a W  : 
/ (1 / ) ( / )

IIK

a W a W f a W


  
= 

0.9 0.1 1.6

0.5
.

7

2
3 3

 
,    (3.7.2.13) 

giving a mean value of: u W  = 3.25 MPa m  , and with 30W   mm, this is u = 10 Mpa of the 

clear wood strength of the tested small clear specimen of 30x10x15 mm
3
 glued in the centre of the 

beam specimen (see Fig.3.9).  

The real value of 
IIcK  follows from eq.(3.7.2.2) and eq.(3.7.2.5): , ,/c IIa c a ca K   or: 

, , (3.25 / )0.85 3.25 0.85 / 1.56IIa c a c cK a W W         MPa m , (3.7.2.14)  

as lower bound. This is equal to the in [9], fig. 12, given value of 1.6 MPa m , which is measured 

by the single-edge notched beam test, as control on the data of the asymmetric four point bending 

tests of [9]. All measured values are at the low side in [8], [9], because the start of non-linearity is 

regarded to be already the ultimate state. 

It thus is confirmed by the data of [8], [9], that the actual mean shear strength of the intact part of 

the fracture plane is determining and not the, on the macro crack length based, apparent critical IIK -  

 
Fig. 3.9. Mode II tests, called “asymmetric four point bending tests” of [8], [9].  

 

crack closure value, which is not constant and too low for macro-crack extension. Macro crack 

extension is thus due to ultimate clear wood shear strength failure, thus occurs by small crack 

merging and extension towards the macro-crack tip.  

As shown in chapter 2, there is no principal difference between mode I and mode II fracture, 

because failure for any stress combination, is due to reaching the ultimate, uniaxial, tensile strength 

at the crack-boundary near the crack tip. Virtual, oblique, crack extension in the isotropic wood 

matrix applies for shear strength and all combined mode I – II failure cases as lower bound solution, 

which is exact, being equal to the empirical Wu-fracture criterion [7], and thus is the real solution.  
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4. Attempted corrections of the singularity approach  
 4.1. Introduction  
Only the in chapter 2 given non-singularity approach is exact, by applying an statically admissible 

equilibrium system, which suffices compatibility and boundary conditions and nowhere violates the 

failure criterion. The singularity approximation, applies not at, but in, the neighborhood of the 

singularity, and is based on collinear crack extension and is therefore not able to satisfy the right 

failure criterion. Corrective models are further needed to remove the infinite stresses at the 

singularities. These models, based on plasticity by crack bridging, are known as non-linear fracture 

mechanics, and are only applicable to singularity solutions. An applied correction is the 

construction of the R-curve, to explain e.g. instable crack propagation. The stress spreading 

hardening effect; viscoelastic; plastic; and other structural change processes in beam type 

specimens at loading, (which are known from molecular deformation kinetics [1]), are wrongly 

regarded as response of one toughening fracture process. This results in many meaningless mutual 

different R-curves depending on the specimen structure and loading cases. Stable crack propagation 

always is possible when the testing rig with sample is stiff enough, as e.g. in the tests of [7]. 

Dynamic analysis (based on Griffiths theory) also predicts that always meta stable crack 

propagation occurs when the stress is raised to the Griffith stress. The need of an R-curve, which 

depends on the stiffness of the testing rig, thus is questionable, especially for overcritical macro 

crack lengths, when clear wood micro crack extension is determining. The decrease of the nominal 

stress at yield drop is wrongly regarded to be a decrease of the actual stress in the fracture plane, 

what leads to the assumption of physical  impossible strain softening behavior at crack extension. 

To correct the wrong ultimate uniaxial stress criterion following from collinear crack extension, 

additional models are applied to constitute the ultimate state as, e.g. given by energy methods; 

numerical crack closure techniques; J-integral, or M- θ- integral, to determine the initial strain 

energy release rate as ultimate state criterion. This does not remove the infinite singularity peak 

stresses, what is tried to be corrected by crack bridging by the fictitious crack models (Dugdale, 

Barenblatt, Hillerborg). This is discussed in § 4.2. The dynamic crack growth models and critical 

energy criteria are discussed in § 4.3. However, these approximations of the singularity 

approximation, are superfluous, because in chapter 2 the exact limit analysis approach without the 

questionable singularities is presented.  

 

4.2. The fictitious crack models   
The fictitious crack model is based on a fictive crack length extension, which is loaded by a 

cohesive flow stress, over such a length that the singularity due to this cohesive flow stress 

neutralizes the singularity due to the field stress at the extended crack tip. The extended crack 
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length is however not fictitious, but real, because only then, there is a real singularity possible at a 

real extended crack tip, which can be neutralized. The singularity is not neutralized at the actual 

existing crack tip when this crack extension would not be real. Calculated thus is the strength of an 

extended crack length in an external stress field, loaded also by a physical and structural not 

possible internal opposite applied, diluting viscous stress field near the crack tips. Although the aim 

of the fictitious crack models (Dugdale, Barenblatt, Hillerborg) initially was, to remove the infinite 

high stresses of the singularity approach, it later was assumed, (against the boundary value solution) 

that by the questionable fictive softening boundary condition, the strength, of the real crack tip 

singularity, approaches zero, in stead of going to infinity according to the exact airy stress function 

solution. These approximation models, with arbitrary outcomes (due to the impossible, arbitrary 

chosen, softening boundary condition and wrong failure criterion), should not to be followed. The 

exact boundary value limit analysis approach, without singularities, leading to the therefore exact, 

Wu-failure criterion, is already known. The same criterion can not be derived by the, singularity 

method, which leads to uniaxial ultimate stress criteria (thus with a possible 100 % overestimation). 

The most near to exact, for uniaxial loading only, is, (according to elastic-plastic limit analysis), the 

Dugdale model, and the results can be compared with the results of the exact solution. Then, the 

length of that enlarged plastic zone pr  of the extended crack length, according to  the Dugdale 

model is given by eq.(4.2.1).  
2

2 2

28 8

Ic
p

f f

K c
r

  

 

 
    

 

  (4.2.1) 

where f  is the yield stress or is regarded to be a cohesive stress.  

This leads to a maximal crack opening displacement c  at the crack tip of:  

8
c f pr

E
 


    = 

2

Ic

f

K

E
 = 

2

f

c

E




  (4.2.2) 

when pr  from eq.(4.2.1) is substituted. This result, based on singularity equations, was necessarily 

based on very small values of r  and 0r  in § 2.2.2, so that all terms containing not the factor 0.5

0r
  

were neglected at the derivation of the equation. For finite values of 0r  this should not be done for a 

correct result. According to the theory, Chapter 2, applies for Mode I, at the crack tip boundary 0r , 

at the start of flow, the condition:   
2

0 2 / fr c    according to eq.(2.3.7) for the elliptic crack tip.  

This is approximately  2 2

0 / 2 fr c   according to eq.(2.2.16) for the circular crack tip of the 

singularity approach, showing a difference by a factor 4. The form of the crack tip determines the 

value of the tangential tensile stress along the crack-tip boundary. The Dugdale numerical factor:  
2 / 8 1.23   (based on an enlarged crack length) is between the values of 0.5 and 2, but is too far 

away from the elliptic value 2, which applies as highest lower bound of limit analysis (which bound 

is equal to the measurements, thus is the solution). Also the theoretical elastic elliptic crack opening 

displacement of (2 ) /c c E  is far above the Dugdale value. The Dugdale model thus shows a not 

exact, too low, and thus rejectable lower bound of the strength, which only applies for uniaxial 

tensile loading perpendicular to crack and grain direction..  

The Dugdale model thus is based on a real, not fictive, extended crack length, Thus the superposed 

compression closing stress is an impossible, not existing, external load on the specimen. This is not 

comparable with the crack problem, which is not loaded perpendicular to the crack boundary by a 

stress depending on the crack opening, but failure is independent of this, by the tangential stress in 

the crack boundary surface (see Chapter 2). This strength determining stress is much higher than the 

regarded maximal stresses of the fictitious crack models, which thus don’t satisfy the right, 

determining, failure criterion.  
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The same thus applies for the Hillerborg model, which is based on closing stresses, proportional to 

the yield drop curve, thus proportional to the lowering mean elastic stress far outside the fracture 

plane and not proportional to the actual, by stress spreading increased actual stress, at the fracture 

plane. Therefore a zero tangential stress is found at the location of the highest (strength 

determining) tangential tensile stress. This error is of course opposite from right because the 

increasing stress and hardening at the fracture plane, (see § 3.2), are opposite to assumed softening.  

  

4.3. Applied crack growth models  
The acknowledged, in principle identical crack growth models for wood, of Williams, Nielsen and 

Schapery, mentioned in [2], are based on linear viscoelasticity and on the Dugdale-Barenblatt 

model in order to try to derive the empirical crack rate equation: 

n

I

da
A K

dt
     (4.3.1) 

The followed procedure is contrary to the normal one, and can not lead to a real solution, because 

the rate equations are constitutive and has to follow from Deformation Kinetics theory, (see § 4.5 

and Section B, [1], [3]) which applies for all materials and is the only way to account for time and 

temperature dependent behavior. Constitutive equations only can follow from theory and not from 

general thermodynamic considerations. In [2] is stated that Fig 4.1 of [2], represents eq.(4.3.1). 

However, eq.(4.3.1) is a straight line on a double log-plot, while Fig. 4.1 gives the semi-log-plot 

which confirms the applicability of the damage equation of Deformation Kinetics [1] in the form:   

exp( )va C   ,    or:    ln( ) ln( ) va C     (4.3.2)  

This equation is equal to eq.(3.6.9), discussed in § 3.6. More appropriate forms of the exact damage 

equations and power law forms, with the solutions as e.g. the yield drop at the constant strain rate 

test, are discussed in [1] and the meaning of the power law equation, eq.(4.3.1), is discussed below.  

The impossibility of the derivation of the fracture rate equation from the Dugdale-Barenblatt 

equations follows e.g. from the derivation in [2, § 2.2] of eq.(4.3.3):  

0

n n

Ic c y pK E a r         (4.3.3) 

 
Figure 4.1 – Crack growth tests of Mindess (fig. 10 of [2]) 

 

based on the relations: /y c E   and Ic c cK E  , with 0

nE E t   and pr a t  . These four  

(interlinked) relations thus also can be used now to eliminate at least 4 parameters, e.g. IcK , y  , pr  

and 0E  to obtain an equation in E, t, a  c  and c . When this is done, eq.(4.3.3) turns to an 

identity: E = E, and eq.(4.3.3) thus is not a new derived crack rate equation but an alternative 

writing of the four relations. The same follows for the other models of § 2.2 of [2] showing 

comparable parameter manipulations of many critical parameter values which can not be applied 

independently because they are part of the same failure condition. The models further are based on 

linear viscoelasticity which does not exist for polymers. It is shown in e.g. [1], page 97, and by the 

zero creep and zero relaxation tests at page 119, that a spectrum of retardation or relaxation times 
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does not exist. The superposition integral eq.(28) or eq.(51) of [2]:  

   
( )t d

t C t d
d

 
  


      (4.3.4) 

thus has no physical meaning. This also applies for the power law models of time and power law 

eq.(4.3.1), which only apply in a limited range, making predictions and extrapolations outer the 

fitted range of the data impossible. It thus is necessary to apply the exact theory of Section B, (see 

iews.nl) for the kinetics of damage and crack growth processes.  

 

4.4. Continuum damage mechanics   
Continuum damage mechanics [4], is a simplified application of needed Deformation Kinetics 

analysis (of [1]), leading to the most elementary damage kinetics equations. But not all possible 

processes can be given in this simplified form. Regarding fracture mechanics of [4], the analysis is 

based on the fractured (lost) area A  of an initially undamaged section 
0A , leading to the variable:  

0

0

A A

A



    (4.4.1)  

The actual stress 
a  on the material then is (expressed, as wanted, in the nominal stress  ):  

0 0

a

P P

A A A




 
  


    (4.4.2) 

where   is the nominal stress and a  the actual tress on still undamaged (=actual) area of the 

section. Now:  

- 1. The actual stress on the actual area evidently determines the rate of damage growth, and: 

- 2.  The strain increase due to damage is caused by the actual stress at the damage location.   

Thus, the stress-strain behavior of the damaged material can be represented by the constitutive 

equation of the virgin, undamaged, material with the stress, in it, replaced by the actual stress. Thus: 
1

'
a

E E E

  



        (4.4.3) 

with:  'E E .   A simple form of the deformation kinetics damage equation for uniaxial tension is:   
n

d
C

dt

 




  

 
    (4.4.4) 

This is comparable with the deformation kinetics equation of § 4.5:   

0

'
exp

dN
CN

dt kN

 
   

 
,    (4.4.5)  

for a forward zero order reaction due to a high reactant concentration and high stress, where this 

exponential equation is replaced, in eq.(4.4.4), by its power law representation (derived in § 4.6).  

Because the stress is high, the sinh(x) -form is changed to exp(x) -form in the equation and initially 

also 0 0/ /N N   is constant, independent of the value of 0  and independent of temperature, 

explaining the time temperature and time stress equivalence. Because the pre-exponential 

concentration term N is high and does not change much during the reaction, the value of 0N  can be 

used and the reaction then is of zero order at the start and the solution eq.(4.5.4) then applies for 

initial failure. After a delay time of relatively small change, eq.(4.4.4), can be used for further 

failure at high enough stress, leading, after integration, for a rod, loaded by a constant tensile stress 

0 , at the initial boundary condition for virgin material: 1   at t = 0, and at: 0   for complete 

fracture, to a time to failure of:  
1

0' 1 nt C n 


    , and for stepwise loading then follows:   

 
1

1

1; ' 1
'

s
nk

k k

k k

t
t C n

t







      with: 1k k kt t t    ,      k = 1,2,…..s.   (4.4.6)  

which is Miner’s rule, or the principle of linear summation, which evidently also applies for wood 

and timber. Important conclusions now are:  
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1. It is necessary to apply the actual stress in damage equations, for right results, as is applied in [4], 

[3] and [1], for all existing solutions, which all are empirically verified by tests, and:  

2. Limit analysis deformation kinetics, (developed in [1]), has to be applied, (e.g. in continuum 

mechanics), for exact solutions.  

3. The determining micro-crack equation, which produces macro-crack extension, can be based on 

an initially high concentration, high loaded, zero order reaction equation.  

This is applied and discussed in chapter 3 and in next paragraphs. 

 

4.5. Deformation kinetics of fracture processes 
The basic equations for fracture according to the limit analysis equilibrium theory of molecular 

deformation kinetics are given in § 4.4 of [1]. The basic concept of this, fundamental theory is to 

regard plastic flow as a matter of molecular bond breaking and bond reformation in a shifted 

position, what is the same as to state that flow is the result of a chemical reaction like isomerization. 

Thus not the composition changes, but only the bond structure of the molecules. Damage occurs 

when not all broken side bonds reform, providing the sites for a damage process.  

The general theory, developed in [1], is based on the limit analysis equilibrium method and is, as 

such, an exact approach, which is able to predict all aspects of time dependent behavior of materials 

by the same constitutive equation, because the mathematical derivation of this general theory is 

solely based on the reaction equations of the bond-breaking and bond- reformation processes at the 

deformation sites due to the local stresses in the elastic material around these sites. The form of the 

parameters in the rate equations, are according to the general equilibrium requirements of 

thermodynamics. By expressing the concentration and work terms of the rate equation in the 

number and dimensions of the flow units, the expressions for the strain rate, fracture, flow, 

hardening and delay time are directly derived without any assumptions. To obtain simplifications, 

series expansion of the potential energy curve is applied, leading to the generalized flow theory, 

thus to a proof of this general flow model, and showing the hypotheses of this generalized theory, to 

be consequences of the series expansion. This theory thus applies generally, also for structural 

changes, giving an explanation of the existing phenomenological models and laws of fracture.  

The rate equation for fracture then can be given, for high stress, as always applies for fracture, by:  

2
sinh exp

r r

d W W

dt t kT t kT

    
     

  
   (4.5.1) 

where the concentration of activated units per unit volume   can be written: 1/N A   .with: N 

flow units per unit area of a cross section, each  at a distance 1  behind each other, with   as jump 

distance and A as area of the flow unit. The work of a flow unit W, with area A moving over a 

barrier, over a distance   is:   

/W fA N   . Because of equilibrium, per unit area, of the external load 1 1    with the force 

on the N flow units: NfA . Thus NfA   and eq.(4.5.1) becomes, expressed in the nominal, macro, 

engineering stress  , which is the part of the total external stress, that acts on N, to be found from 

tests with different loading paths:  

1 1

exp
r

d N N

dt t NkT

  

 

 
   

  
,  (4.5.2) 

In this equation is rt  the relaxation time. The value of A can be regarded constant because any 

change is compensated by an corrected value of f  and a corrected value of   to obtain a correct 

load on the flow unit and its correct volume. Eq.(4.5.2) can be written, with 1' /N N   (the number 

of flow units per unit volume):       ' / ' / exp /rd N dt N t NkT    ,  or: 

exp
' ' r

d

dt N N t NkT

    
   

  
   (4.5.3)  

For this zero order reaction in wood, when the very high initial reactant concentration does not 
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change much, and initially also 
0 0/ /N N   is constant, the solution  is:  

0 0 0
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  or  (with 1

kT

h
 ):    

 

 
Figure 5. Stress and temperature dependence of the lifetime for structural materials [1]   
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,  (4.5.4) 

This last, according to Fig. 5, which applies for structural materials. Thus 0' 0.5 'fN N   as also  

experimentally found for fracture, i.e. the crack length is about the crack distance, or the intact area 

has reduced to 0.5 times the initial area when macro-crack propagation starts due to small crack 

merging behavior, which explains the measured mode I and mode II final nominal yield drop  

behavior of fracture.  

 

4.6. Derivation of the power law:  
The power law equation may represent any function f(x), as follows from the following derivation. 

It therefore also may represent, in a limited time range, a real damage equation giving then a 

meaning of the power n of the power law eq.(4.4.4). This is applied in § 4.4. 

Any function f(x) always can be written in a reduced variable x/x0   

1 0( ) ( / )f x f x x     (4.6.1) 

and can be given in the power of a function:  

  1/

1 0 1 0( ) ( / ) ( / )
n

n
f x f x x f x x   and expanded into the row:  
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   
      
   

     (4.6.2)  

when:    
1/ 1/ 1 '

1 1

1
(1) (1) (1)

n n
f f f

n


     or: '

1 1(1) / (1),n f f   

where:     
 0

'

1 1 0 0 / 1
(1) / / /

x x
f f x x x x


         and   1 0(1) ( )f f x   
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Thus:  0

0

.( ) ( )

n

x
f x f x

x

 
  

 
     with   01

1 0

'( )'(1)

(1) ( )

f xf
n

f f x
       (4.6.3)  

Thus the derivation of the power law, using only the first 2 expanded terms, shows that eq.(4.6.3)  

only applies in a limited range of x around 
0x . (Using one 

0x  is not limiting for strength problems). 

Using this approach on equation: 2 sinh( ) exp( )a C C    , (for high stresses), gives:  

0

0

0

. .exp( )a C a







 
   

 
  (4.6.4)  

The power 0n   of the power law equation follows from the slope of the double log-plot:       

0 0ln( ) ln( ) ln( / )a a n         (4.6.5)  

Thus: 0ln( ) / ln( / )n d a d    and n 0  gives a meaning of n as the activation volume para-

meter 0  of the exact equation. The values of “n” and the matching activation energies of the 

different creep and damage processes in wood, with the dependency on stress moisture content and 

temperature, are given in [1]. The constancy of the initial value of the parameter 0 , independent 

of applied stress 0 , explains the time-temperature and time- stress equivalence and explains, by 

the physical processes, why and when at high stresses, the in [2] mentioned value of n + 1 ≈ 60 is 

measured and at lower stresses, half this value (see [1]).   

 

4.7. J-integral application  
Path-independent integrals are used in physics to calculate the intensity of a singularity of a field 

quantity without knowing the exact shape of this field in the vicinity of the singularity. They are 

derived from conservation laws. For the singularity method of wood the J-integral (Rice integral) 

and M-θ-integral are applied for estimation of the energy release rate. However, even the finite 

element applications for wood, appear to lead to quite different outcomes by different authors at 

different situations, showing the application to be not exact, as also follows from remarks from [5]:  

J (near a crack singularity) is the component along the crack-line of a vector integral, having a 

meaning for not oblique, (thus invalid for mode II and mixed mode I-II) and (only for mode I 

possible) incipient self-similar growth of a crack in a (nonlinear) elastic material. In this case, J has 

the meaning of the rate of energy-release per unit of crack-extension. The path-independency of J 

can be established only, when the strain energy density (or stress working density) of the material is 

a single valued function of strain. In a deformation theory of plasticity, which is valid for radial 

monotonic loading but precludes unloading and which is mathematically equivalent to a nonlinear 

theory of elasticity, J still characterizes the crack-tip field and is still a path-independent integral. 

However, in this case, J does not have the meaning of an energy-release rate; it is simply the total 

potential-energy difference between two identical and identically (monotonically) loaded cracked 

bodies which differ in crack lengths by a differential amount. Further, in a flow theory of plasticity 

(as applies for wood), even under monotonic loading, the path-independence of J cannot be 

established. Also, under arbitrary load histories which may include loading and unloading, J is not 

only not path-independent, but also does not have any physical meaning. The blunting of the top of 

the loading curve and formation of the fracture zone and the main amount of crack growth with 

crazing and small crack formation in, (and outside), the process zone, means unloading and non-

proportional plastic deformation which also invalidates the deformation theory of plasticity.  

Thus the J- integral method, of the singularity approach, does not apply to wood (and other 

structural materials [6]). It is shown in § 2.3 and § 2.4, that oblique crack extension in the isotropic 

matrix and skipping across fibers, is necessary for mode II and mixed mode I-II crack extension.  
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5. Energy theory of fracture 
5.1 Introduction 
The failure criterion of clear wood, i.e. wood with small defects, is the same as the failure criterion 

of notched wood, showing again that the small-crack is dominating and extension towards the 

macro-crack tip is the cause of macro-crack propagation. This small-crack failure criterion thus 

delivers essential information on macro-crack behavior as discussed in this chapter. The limit 

analysis derivation of the boundary value problem and applied Airy stress function of small crack 

extension are given in Chapter 10.  

 

5.2. Critical distortional energy as fracture criterion  
The failure criterion of wood consists of an anisotropic third degree tensor polynomial (see [1], 

Section A), which, for the same loading case, is identical to the Wu-mixed mode I-II-equation [2], 

eq.(5.3). The second degree polynomial part of the failure criterion, eq.(5.1), is shown to be the 

orthotropic critical distortional energy principle for initial yield [3] showing, also empirically, the 

start of energy dissipation, what is not yet, incorporated in the finite element method [4]. By this 

dissipation according to the incompressibility condition, the minimum energy principle is followed, 

providing therefore the exact initial yield criterion as (see Section A):   
22 2

12 2
2 1

' ' ' '

y y yx x x
x yF

XX X X YY Y Y S

     
           (5.2.1) (5.1)  

where X, Y are the tension strengths and ', 'X Y  the compression strength in the main directions and 

S  is the shear strength and: 122 1/ ' 'F XX YY  

This value of 12F  is necessary for the elastic state which also applies at the starting point of initial 

stress redistribution and micro-cracking of the matrix. After further straining, 12F  becomes zero, 

12 0F  , at final failure initiation. The absence of this coupling term 12F between the normal stresses 

indicates symmetry, thus (possible random oriented) initial small-cracks are extended during 

loading to their critical length in the weak planes, the planes of symmetry, only. Then, when these 

small-cracks arrive at their critical crack-density (discussed in § 3.6) and start to extend further, a 

type of hardening occurs because the reinforcement prevents crack extension in the matrix in the 

most critical direction. Then, due to hardening, 12F  and all third degree coupling terms of the tensor 

polynomial become proportional to the hardening state constants [3] and therefore also dependent 

on the stability of the test and equipment. For the mixed I-II-loading of the crack plane by tension 

2  and shear 6 , the polynomial failure criterion reduces to:  
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2 2 2

2 2 22 2 66 6 266 2 63 1F F F F          or: 6 2 2

2

(1 / ) (1 / ')

1 / '

Y Y

S c Y

  



  



 (5.2) 

with: c 2

2663 'F Y S   0.9 to 0.99, depending on the stability of the test. When, due to hardening, c 

approaches to c   1, eq.(5.2) becomes eq.(5.3), the in § 2.3 exact, theoretically explained, 

Coulomb- or Wu-equation, with a cut off by the line: 
2 Y  .  

Full hardening is possible when the test rig is stiff enough to remain stable during test. The solution 

of the crack problem of Irwin as summation of in plane and antiplane solutions in order to use, 

isotropic stress functions for the orthotropic case, and to apply descriptions in the three different 

modes and to sum the result for a general mixed mode case is not right for wood because it misses 

the stress interaction terms and because the failure equation, eq.(5.2), is not orthotropic, by being 

not quadratic, but contains a third degree term and thus does not show orthotropic symmetric. This 

hardening coupling term is absent in the general accepted solutions. The stress function which leads 

directly to the Wu-equation, eq.(5.3), is given here in § 2.3 and in [5].   
2

6 2 1
S Y

  
  

 
   or:    

2

2
1II I

IIc Ic

K K

K K
   (5.3) 

Wrongly, and against the lack of fit test of Table 2.1, is for wood and other orthotropic materials, 

eq.(5.2) generally replaced in literature by:  
2 2

2

2 2
1

Y S

 
  , written as: 

2 2

2 2
1I II

Ic IIc

K K

K K
  ,  (5.4)  

which surely is not a summation of energies, as is stated, but is identical to eq.(5.1) when it wrongly 

is assumed that the compression and tension strength are equal for wood and orthotropic materials.  

To know the mode of failure, the stresses at the crack boundary should be known. This follows 

from the exact derivation in [5] and is applied by the VCC- technique of finite element simulation. 

According to the method of Sih, Paris, the sum of separate solutions for the 3  

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. Eq.(5.2), influence of 2

266 2 63F   ,    Fig. 5.2. Also same hardening at compression  

      giving data outside the elliptic curve.   with dashed parabolic limit eq.(5.3)   

 

modes, without interactions, is assumed to be determining, based on assumed isotropic and 

orthotropic symmetry. This however is against eq.(5.2) because the important coupling between 

normal and by shear stresses, as given by 2

266 2 63F    in eq.(5.2), is not present in the existing 

methods and the “mixed mode” interactions as given by Fig. 5.1 and 5.2 can not be described by 

other methods, because it is not quadratic but contains a third degree term and thus does not show to 

be orthotropic.   

 

5.3. Revision of the critical energy release rate equation.   
Based on the failure criterion of § 5.2, adaption of the energy release equation is necessary. 

The Griffith strength equation, eq.(3.2.8) of § 3: 2 /y c yG E c   can be extended by superposition 
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to:     2 2 /y xy c yG E c     (5.5) 

This only is right, when cG  is not constant but may reach values between IcG  and  IIcG depending 

on /y xy  , because cG  also has to satisfy the failure criterion eq.(5.3 ). 

In orthotropic stresses, eq.( 5.5) is:  2 2 2

6/ /y xy f yn G E c      and when 0xy  , is  

fG  = 
IcG  and 

Ic y IcK E G .  When 0y   is: 2 2 2

6 64xy IIc y Ic yc n G E n G E    , because  

62IIc IcK n K  (eq.(2.3.19)).  Thus: 
6 62IIc y IIc y IcK n E G n E G   or:         4IIc IcG G   (5.6)  

The failure condition eq.(5.3) can be written in fracture energies: 

 

 

2

2
1

III

Ic IIc

KK

K K
   I II

IIcIc

G G

GG
   

 1f f

IIcIc

G G

GG

   
   (5.7) 

where, according to eq.(5.5):   1f I II f fG G G G G           (5.8) 

Thus: 
 

2

21

f I

f II

G K

G K







 or: 

2 2

2 2

1 1

1 1
II xy

I y

K

K






 

 

  (5.9)  

and   depends on the stress combination /xy y   in the region of  the macro notch-tip and thus not 

on the stresses of fracture energy dissipation as generally postulated by the I and II failure modes. 

This stress combination also may follow from a chosen stress field according to the equilibrium 

method of limit analysis as is applied in § 6 and § 7.  

With eq.(5.6): / 4IIc IcG G  , eq.(5.7) becomes:  

2 24 / (1 ) / (1 )f Ic IIcG G G       (5.10) 

where   acts as an empirical constant explaining the differences in fracture energies depending on 

the notch structure and shear slenderness of the beam by the different occurring /xy y  -values 

according to eq.(5.9).  

Applications of the theory with the total critical fracture energy fG  are given in § 6 and § 7. 

The theory is e.g. applied for beams with rectangular end notches as basis of the design rules of the 

Dutch Timber Structures Code and some other Codes and is a correction of the method of the Euro-

Code. In the Euro-Code, an approximate compliance difference is used and a raised stiffness which 

does not apply for the applied Airy stress function. Further IcG  is used in stead of fG  according to 

eq.(5.10).  Important is further that the theoretical prediction IIc IcG 4G  is verified by measuring  

IIc IcG / G  = 3.5  (with R
2
 = 0.64, thus not very precise).   

At comparing results it should be realized that there is Weibull volume effect of the strength. 

Further is a strong hardening possible due to compression perpendicular to grain at bending failure 

of small clear single-edge notched specimens, what wrongly is regarded as IIcG resistance increase.  

Eq.(5.5) is equal to eq.(5.8) and is an extension of the Griffith strength for combined loading.  
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6. Energy approach for fracture of notched beams  
 6.1. Introduction  
The theory of total fracture energy, discussed in § 5, was initially developed to obtain simple 

general design rules for beams with square end-notches and edge joints, loaded perpendicular to the 

grain design rules of square notches and joints for the Dutch Building Code and later, as correction 

of the method of [1], published in [2] with the extensions for high beams. Horizontal splitting in 

short, high beams, loaded close to the support, causes no failure because the remaining beam is 

strong enough to carry the load and vertical transverse crack propagation is necessary for total 

failure. This is not discussed here because it is shown that also the standard strength calculation is 

sufficient. In [3] and [4] the theory is applied to explain behaviour, leading to the final proposal for 

design rules for the Eurocode, given at § 7.5, and to an always reliable simple design method.  

In the following, the theoretical basis and implementation of the new developments of the energy 

approach for fracture of notched beams are given and it is shown that the predictions of the theory 

are verified by the measurements. The presentation of more data can be found in [2].  

 

6.2. Energy balance  
When crack-extension occurs over the length Δx, along the grain, then the work done by the 

constant load V is V∙Δδ, where Δδ  is the increase of the deformation at V. This work is twice the  

 
Figure 6.1. - Notched beam  

 

increase of strain energy of the cantilever part: V∙Δδ/2. Thus half of the external work done at 

cracking is used for crack formation being thus equal to the other half, the strain energy increase. 

Thus in general, when the change of the potential energy ΔW = V∙Δδ/2 becomes equal to the energy 

of crack formation, crack propagation occurs. The energy of crack formation is: c cG b x G bh    , 

where cG  is the crack formation energy per unit crack area. Thus crack propagation occurs at  

V = fV  when: 2/ 2 ( / ) / 2        cW V V V G bh ,    thus when:  

2

( / )
c

f

G bh
V

V








  (6.1) 

and only the increase of the compliance δ/V has to be known.  

The deflection δ can be calculated from elementary beam theory as chosen allowable equilibrium 

system as a lower bound of the strength. This is close to real behaviour because, according to the 

theory of elasticity, the deflection can be calculated from elementary beam theory while the 

difference from this stress distribution is an internal equilibrium system causing no deflection of the 

beam and also the shear distribution can be taken to be parabolic according to this elementary 

theory, as only component of this polynomial expansion, contributing to the deflection.  
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According to the Fig. 6.2, the notch can be seen as a horizontal split, case: a = a’, and case “a” can 

be split in the superposition of case “b” and “c”, where b = b’.  

Case “c” now is the real crack problem by the reversed equal forces that can be analyzed for 

instance by a finite element method, etc. From the principle of energy balance it is also possible to 

find the critical value of case “c” by calculating the differences in strain energies or the differences 

in deflections δ by V between case: b’ and case a’, thus differences in deformation of the cracked 

and un-cracked part to find Δ(δ/V)  for eq.(6.1).  

Deformations due to the normal stresses N of case c, are of lower order in a virtual work equation 

and should not be accounted. It then follows that case c of Fig. 6.2 is equal to a mode I test and 

c IcG G . When the beam is turned upside down, or when V is reversed in direction, then 'M  and 

'V  are reversed closing the crack and fracture only is possible by shear,  identical to the mode II 

test and then 
c IIcG G  

The change of δ by the increase of shear deformation is, with 
eh h  :  

1.2
v

h h
V

G b h bh

 




 
   

 
  (6.2)  

 
Figure 6.2 - Equivalent crack problem according to superposition  

 

The change of δ by the increase of the deflection is:  

 
 

 

 
3 3 3

3 3 3

4 1
1

3 /123 /12
m

V h V h V

Ebh EbEb h

  




 
     

 
   (6.3)  

Thus:     
2

3

( / ) 1.2 1 12 1
1 1

V

Gb Eb

 

  

    
        

    
  (6.4) 

The critical value of V thus is according to eq.(6.1):  
2

2

3

1.67

1 1 1 10
1 1

c
f

G hb
V

G E



 


   

      
   

   (6.5) 

or: 

 3 4 2 4

/

0.6( ) 6 /

f c
V GG h

b h G E



     


  
   (6.6) 

For small values of β eq.(6.6) becomes:  
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2

/

0.6 ( )

f c
V GG h

b h  


 
   (6.7) 

For high values of β, eq.(6.6) becomes:  

4

/

6( )

f c
V EG h

b h



   



   (6.8) 

 

6.3. Experimental verification  
A verification of the prediction of the theory for high values β, eq.(6.8), when the work by shear is 

negligible, is given by Table 6.1 of an investigation of Murphy, mentioned in [1],   

regarding a notch starting at β = 2.5 and proceeding to β = 5.5. Further also beams were tested with 

a slit at a distance: β = 2.5. Because the exact eq.(6.6) gives a less than 1 %  

higher value, eq.(6.8) applies. ( cGG = 11.1 resp. 10.9 1.5N / mm ) and: cEG = 48.8 1.5N / mm . 

This value is used in table 6.1 for comparison of eq.(6.8) with the measurements, showing an  

excellent  agreement between theory and measurement. For all specimens was: α = 0.7; η = L/h = 

10 (L is distance field loading to support) and b = 79 mm. The other values are given in table 6.1.  

 

Table 6.1. Strength of clear laminated Douglas fir  

              with  notches in the tensile zone in MPa 

h 

 mm 
  num- 

ber 

      V/αbh 

tests     eq.(6.8) 

305 2.5 2 0.46 0.47 

305 5.5 2 0.24 0.22 

457 2.5 2 0.38 0.38 

457 5.5 1 0.16 0.17 

 

The fracture energy is: cG      
2

48.8 / 14000 0.17 N / mm 170 N / m , which agrees with values 

of the critical strain energy release rate. The value of IcK  is about: 0.17 700 10.9IcK     

1.5N / mm = 345 1.5kN / m , as to be expected by the high density of Douglas fir.  

In table 6.2, data are given of Spruce for low values of β, to verify the then predicted theoretical 

behaviour according to eq.(6.7) with energy dissipation by shear stresses only. It appears for these 

data that the difference between the mean values according to eq.(6.7) and eq.(6.6) are 10 % and 

thus not negligible small and also the values of eq.(6.6) are given to obtain a possible correction 

factor. It follows from table 6.2 for Spruce that: cGG  1.56.8N / mm  or: 

cG   26.8 / 500 0.092N / mm 92N / m . 

For Spruce is IcK  ≈ 6.3 to 7.6 according to [5], depending on the grain orientation and then also 

applies: 2E G  and:  2 6.8Ic cK E G   1.5N / mm .  

Although the fracture energy is shear-stress energy, failure still is by mode I (of Fig. 6.2) and not by 

the shear mode II, as is supposed by other models. Thus the total work contributes to failure, 

whether it is bending stress energy (Table 6.1) or shear stress energy (Table 6.2) and 1   (eq.(5.9) 

for failure of this type of notch by the high tensile stress perpendicular to the grain at the notch root.   

In [2] more data are given regarding the strength of square notches. The size influence, or the 

influence of the height of the notched beam on the strength, is tested on beams with notch 

parameters   = 0.5 and 0.75;   is 0.5 and heights h 50, 100 and 200 mm with b = 45 mm at  

moisture contents of 12, 15 and 18%. The strength fGG  appeared to be independent of the beam  
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Table 6.2. Strength of notched beams, Spruce, Mohler and Mistler.  

h 

mm 

    η/α b 

mm 

n 

 

V/bαh 

N/mm
2
 

var. 

coef. 

% 

fGG  

eq.(6.6) eq.(6.7) 

N/mm
1.5

 

120 .917 .25 3.4 32 6 2.36 11 (5.8) (5.5) 

.833 3.8 27 1.93 15 6,4 6.1 

.75 4.2 43 1.68 19 6.6 6.2 

.667 4.7 14 1.52 18 6.5 6.1 

.583 5.4 10 1.5 18 6.8 6.3 

.5 6.3 49 1.59 18 7.4 6.7 

.333 9.5 10 1.48 16 7.0 5.9 

mean 6.8 6.2 

Testing time more than 1 min., m.c. 11%, ρ = 510 kg/m
3
 

 

depth as to be expected for macro crack extension along an always sufficient long fracture plane. 

The value of fGG  at moisture contents of 12, 15 and 18% was resp.: 6.7; 7.7 and 8.0 1.5Nmm . 

Higher values of fGG  of Spruce, given in [2], are possible for loads close to the support. Then 

horizontal splitting does not cause failure because the remaining beam is strong enough to carry the 

total load and the derivation is given by regarding vertical crack propagation necessary for total 

failure (bending failure of the remaining beam). For this mode I,  

mGG   57.5 N/ 1.5mm  =  1818 kN/ 1.5m  (comparable with 1890 kN/ 1.5m  of [5])  

For still higher values of  , above α = 0.875, compression with shear failure is determining by 

direct force transmission to the support.  

In [3] is shown that Foschi’s finite element prediction and graphs, given in [5] can be explained and 

are identical to eq.(6.8).   
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7. Energy approach for fracture of joints loaded perpendicular to the grain.  
 7.1 Introduction 
It was for the first time shown in [2] that fracture mechanics applies for these type of joints. As for 

square end-notches, the analysis can be based on the compliance change by an infinitesimal crack 

increase. Because measurements show no difference in strength and fracture energy between joints 

at the end of a beam (Series G6.1 and G6.2 of [1]) and joints in the middle of the beam (the other 

G-series), and also the calculated clamping effect difference by crack extension is of lower order, 

this clamping effect of the fractured beam at the joint in the middle of a beam, has to be disregarded 

as necessity of the virtual energy equation of fracture disregard lower order terms. This is according 

to the limit state analysis which is based on the virtual work equations. For end-joints, the split off 
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part is unloaded and there is no normal force and no vierendeel-girder action at all and the situation 

and fracture equations are the same as for the notched beams of § 6. For joints in the middle of the 

beam, splitting goes in the direction of lower moments and is stable until the total splitting of the 

beam. The analysis in [1] and [2] shows this stable crack propagation because the terms in the 

denominator become smaller at crack length increase, until the shear term remains, giving the 

maximal value of V according to eq.(7.6), the same value as for end-joints.   

It thus is not true, as is stated in the CIB/W18-discussion of [1], that the analysis and theory are 

incorrect when virtual lower order terms are omitted in the analysis and that splitting of joints 

analysis is not comparable to splitting of notched beam analysis. The proof that this neglecting of 

the vierendeel-action is right is given (outer the empirical proof by the measurements) by the 

complete analysis for this case in [3], where also the influence on the strain of normal stresses is 

accounted, leading to eq.(7.5) containing the negligible clamping effect term in the denominator, 

(based on the assumption that not total splitting of the beam is the end state).  

 

7.2. Energy balance  
For a simple calculation of the compliance difference of the cracked and un-cracked state, 

(maintaining the clamping action in the end state) half a beam is regarded, as given in Fig. 7.1, 

loaded by a constant load V. At the start of cracking, the deflection at V increases with δ (see Fig. 

7.2) and the work done by the force V is: 2ΔW = V∙δ, which is twice the increase of the strain 

energy (ΔW = V∙δ/2) of the beam and therefore the amount ΔW is used to increase the strain energy 

and the other equal amount of ΔW is used as fracture energy. Because δ is the difference of the 

cracked and "un-cracked" state, only the deformation of the cracked part βh minus the deformation 

of that same part βh in the un-cracked state, need to be calculated, because the deformation of all 

other parts of the beam by load V are the same in cracked and un-cracked state. As discussed at 6.2, 

the deflection δ can be calculated from elementary beam theory of elasticity. It thus is not right to 

regard an additional deformation r
, as is done, due to the non-linearity and clamping effect of the 

cantilevers βh, formed by the crack. The clamping effect change is of lower order at an infinitesimal 

crack extension. If this effect would have an influence, there should be a difference in notched 

beams in the splitting force for a real square notch of length βh and a vertical saw cut at a distance 

βh from the support, because that slit has at least twice that clamping effect (see Fig. 6.2).  

For a connection at the middle of a beam the following applies after splitting (see Fig. 7.1). The part 

above the crack (stiffness  
3 3

2 1 /12 I b h ) carries a moment 3M  and normal force N and the 

part below the crack (stiffness 3 3

1 /12I b h ) carries a moment 1M , normal force N and a shear 

force V. and at the end of the crack a negative moment of about: 2 1 M M . Further is 

2 1  M M V , thus 1 / 2M V . 

The deformation of beam 2 of the cracked part βh is equal to the un-cracked deformation un  of that 

part and the deformation of beam 1 is un  plus the crack opening   (see Fig. 7.1 and 7.2) and δ is: 

22 3 3 3 3

1

3

1 1 1 1 1

1 2 1 1 1 1

2 3 2 3 4 12

    
 


           

MV V V V V

EI EI EI EI EI bE
  (7.1)   

The deflection difference of the cracked and un-cracked state is total:  

1.2  




 
   

 

h h
V

G b h bh
+ 

3

3





V

bE
  (7.2) 

The condition of equilibrium at crack length β is:  

 / 2 / 0      cV G b h     or:       2/ / / 2     cV V G bh     or,  

with cG  as fracture energy:  
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c
f

2G bh
V

( / V)


 



  (7.3) 

where. It follows from eq.(7.2) that: 

  2

3

/ 1.2 1 3
1

 

  

  
   

  

V

bG Eb
   (7.4) 

and eq.(7.3) becomes: 

 

  2

/

0.6 1 1.5 / ( )


   


 

c
f

GG h
V b h

G E
   (7.5) 

giving, for the always relatively small values of β,  the previous found eq.(6.7): 

/

0.6 (1 )  


  

f c
V GG h

b h
                                  (7.6)  

 
Figure 7.2 - Statics of half the crack  

Figure 7.1 - Beam with crack by the dowel force of a joint and bending moment  

 

which thus also applies for notched beams and for end-joints and verifies the lower bound of the 

strength, predicted by the theory of [1]. This also indicates that only work by shear stresses 

contributes to fracture. The fit of the equation with vierendeel action, eq.(7.5), to the data is not 

better than the fit by eq.(7.6) what shows that the term 1.5β
2
G/αE is small with respect to  

0.6(1 – α)α and also that β is about proportional to α and is of the same order. Comparison of  

eq.(7.5) and eq.(6.6) shows that the higher value of the end joint is determining for this definition of 

the strength and the same design rules as for notches are possible for joints when not the joint but 

splitting is determining. However design should be based on “flow “ of the joint before splitting of 

the beam and the interaction of joint failure and beam splitting has to be regarded as follows.  

When crack extension starts of a cantilever beam loaded by a constant load V, giving a deflection 

increase of δ at V, then the applied energy to the beam is V∙δ. The energy balance equation then is:  

/ 2   cV V E   (7.7)  

where / 2V  is the increase of the elastic energy and cE  the energy of crack extension.  

Thus: / 2cE V   (7.8)  

Thus the energy of crack extension is equal to the increase of elastic energy. 

Eq.(7.8) also can be written with de incremental deflection δ = du: 
2

cE V d(u/V)/2 fG bh d ( ) or: 

2

( / ) / 


 

fG bh
V

u V
  (7.9)  

where fG is the fracture energy per unit crack surface and “bhd(β)” the crack surface increase with 
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“b” as width and “h” the height of the beam with a crack length l = βh. 

When the load on the cantilever beam, mentioned above, is prevented to move, the energy balance, 

eq.(7.7) becomes:  

0  e cE E , or: / 2   c eE E V   (7.10)  

for the same crack length and now the energy of crack extension is equal to the decrease of elastic 

energy in the beam. 

When the joint at load V becomes determining and just start to flow at 
1  when splitting of the 

beam occurs, then eq.(7.7) becomes: 

1 1=( ) / 2 ( ) cV V V E          (7.11)  

where again 
1 / 2V  is the increase of the elastic energy and 

1( ) V  the plastic energy of the flow 

of the joint. From eq.(7.11) then follows: 

1 / 2cE V   (7.12)  

the same as eq.(7.8), despite of the plastic deformation.  

For connections, plastic deformation in the last case will not yet occur because it is coupled with 

crack extension. When the dowels of the joint are pressed into the wood, the crack opening 

increases and thus also crack extension. It can be seen in eq.(7.11), that when flow occurs, the total 

applied energy Vδ is used for plastic deformation. This is a comparable situation as given by 

eq.(7.10), and the at the plastic flow coupled crack extension will cause a decrease of the elastic 

energy. eq.(7.11) thus for joints is:  

1 2 1V = (V ) / 2 ( )          sV E   (7.13)  

where 2 / 2V  is the decrease of the elastic energy by the part of crack extension due to the plastic 

deformation. From eq.(7.13) now follows:  

1 2( ) / 2  sE V   (7.14)  

and eq.(7.9) becomes: 

1 2

2

(( ) / ) / 


  

fG bh
V

u u V
  (7.15)  

From eq.(7.12) and (7.14) follows that 1 1 2( )   c cV V , where 1c cV  is the amount when the 

connection is as strong as the beam. Thus: 

1 2

1

 




 c

c

V

V
  c n c

n

n V n

nV n
   (7.16) 

where nV  is the ultimate load of the dowel at flow and n the number of dowels.  

Substitution of eq.(7.16) into eq.(7.15) gives: 

1

2

( / ) / 
 

 

f

c c

G bh n
V

u V n
  (7.17) 

what is equal to / cn n  times the strength according to eq.(7.9) for 1 cu u , thus / cn n  times the 

splitting strength of the beam as is applied in [1].  

According to eq.(7.13), the theoretical lower bound of V according to eq.(7.17) occurs at 1 2  , 

Thus when / cn n  = 1/2. In [1], the empirical value of 0.5 to 0.4 is mentioned according to the data 

giving:  

1 1

2 2
0,45 0.67

( / ) / ( / ) /

f f

c c

G bh G bh
V

u V u V 
   

   
  (7.18)  

This requirement for “flow” of the joint at failure: fGG = 0,67∙18 = 12 1.5Nmm  is included in the 

Eurocode (see § 7.5). 
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The condition 
1 2   means that there is sufficient elastic energy for total unloading and thus full 

crack extension with sufficient external work for plastic dissipation by the joints. According to 

eq.(7.13) is for that case:  

1cE V   7.19) 

 

7.3. Experimental verification  

The value of 
cE  of eq.(7.19) is 12 1.5Nmm  as follows from the test data given in [1]. In [1], first 

test-results of 50 beams of [4] with one or two dowel connections are given of beams of 40x100 and 

40x200 mm with  values between 0.1 and 0.7 and dowel diameters of 10 and 24 mm. In all cases 

0.5 cn n   and not splitting but “flow” of the connection is determining for failure reaching the in 

[1] theoretical explained high embedding strength by hardening as to be expected for the always 

sufficient high spreading possibility of one- (or two-) dowel joints. The same applies for the 1 and 2 

dowel joints of the Karlsruhe investigation. Splitting then is not the cause of failure but the result of 

post-failure behaviour due to continued extension by the testing device.  

 

Table 7.1: TU-Karlsruhe test data No.1: Joint with nails 

Type No  d rows Col a=h ar fc GGc =L /h F/bh 

Test tests  m N   [1] eq.(7)   

  mm   mm mm MPa N/mm
1.5

  MPa 

 beam: b.h=40.180 mm        

A1 8 3.8 5 1 28 76 3.7 13.9 2.37 7.37 

A2 4 3.8 5 1 47 76 4.3 13.3 2.37 5.82 

A3 3 3.8 5 1 66 76 4.2 11.3 2.37 4.52 

A4 3 3.8 5 1 85 76 4.2 10.2 2.37 3.94 

A5 3 3.8 5 1 104 76 5.5 11.7 2.37 4.54 

 beam: b.h =40.180mm   mean 4.4 12.1   

B1 4 3.8 5 2 47 76 3.5 15.5 2.37 6.77 

B2 3 3.8 5 3 66 76 3.8 17.9 2.37 7.15 

B3 3 3.8 5 4 85 76 3.3 16.1 2.37 6.21 

B4 3 3.8 5 5 104 76 3.6 17.2 2.37 6.69 

 beam: b.h = 40.120 m  mean 3.6 16.7   

C1 3 3.8 2 1 28 76 6.8 15.3 2.18 8.51 

C2 3 3.8 2 1 28 57 6.2 13.0 2.26 7.21 

C3 3 3.8 2 1 28 38 5.6 10.9 2.34 6.07 

C4 3 3.8 2 1 28 19 5.7 10.3 2.42 5.73 

C5 3 3.8 1 1 28 0 6.9 11.2 2.50 6.21 

C6 3 8 1 1 28 0 5.8 9.7 2.50 5.40 

 beam: b.h=40.180 mm  mean 6.2 11.7   

L8 1 8 1 1 28 0 5.0 8.8 2.50 4.64 

 

Table 7.1 of [1] shows that for series B, splitting of the beam is determining. Whether there are 10, 

15, 20 or 25 nails per shear plane, the strength is the same: cGG 16.7 1.5Nmm . This is  

confirmed by the too low value of the embedding strength of the nails cf  of series B. A more 

precise value of cGG  follows from the mean value of 17.1 1.5Nmm  of series B2 to B4. Then the 

value for 10 nails of series B1 is a factor 15.5/17.1 = 0.9 lower.  

Thus / 10 / 0.9c cn n n  . Thus 12cn   for series B. This means that the number of 5 nails of 
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series A is below / 2 6cn   and the measured apparent value of 
cGG  is the minimal value of 

0.5 / 17.1 0.5 12.1c c cGG n n    1.5Nmm . The same value should have been measured for 

series C because the number of 3 nails also is below / 2 6cn  . Measured is 11.7  1.5Nmm . For the 

53 beams of all the series G of [1] this is 12.0 1.5Nmm . As mentioned a mean value of 12 is now 

the Eurocode requirement.  

The value of 0.5 cn , depends on dimensioning of the joint and thus on amount of hardening by the  

spreading effect of embedding strength. Thin, long nails at larger distances in thick wood members  

are less dangerous for splitting and show a high value of cn . For series G, with b = 100 mm, / 2cn  

is at least below 8 nails. For series V of [1] with dowels of 16 mm, 8.6cn  . For design, cn  need 

not to be known. But dimensioning of the joint to meet also the requirement of cGG = 12 

1.5Nmm , will lead to the number of nails of / 2cn . This dimensioning also determines the value 

of
cf . The value of 

cf = 4.4 MPa of series A is lower than 
cf = 6.2 MPa of series C, in proportion to 

the square root of the spreading lengths per nail as expected from theory [1].  

 

7.4. Design equation of the Eurocode 5 

As discussed in [1], the shear capacity is (for he  0.7 h) 

10.3 10.3
(1 ) ( )

u e

e

V h

h hb h




 

 
 

where 10.3 (2 / 3) ( / 0.6)cGG  is the characteristic value.  

This can be replaced by the tangent line through this curve at point  = 0.5 giving: 

1.7u
c

V
GG

b h
 = 1.7∙(2/3)∙12 = 13.6 1.5Nmm .  
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8. Conclusions Chapter 1 to 7 
 - Strength analysis has to be based on the technical exact theory of limit analysis, at least by 

applying the lower bond equilibrium method, of regarding an equilibrium system which satisfies the 

boundary conditions and nowhere surmounts the failure criterion. Thus, accordingly, a linear elastic 

boundary value approach is possible up to the elastic- full plastic boundary around the crack tip.  

 - Wood acts as a reinforced material. The isotropic matrix fails earlier than the reinforcement and 

determines initial “flow” behavior. It therefore is necessary to solve the Airy stress function for the 

stresses in the isotropic matrix and then to derive the total (“orthotropic”) stresses from this 

solution. Based on this approach, the mode I and II stress intensities are: Ic y IcK E G  ,  
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6IIc y IIcK n E G , based on the mode I and II energy release rates, which are related: 4IIc IcG G  

and which are for total, orthotropic stresses, for combined mode I – II failure: 
2 24 / (1 ) / (1 )f Ic IIcG G G       with :  2 21/ 1 /xy y     and: 

   6 21 122 /xy yn G E        

The theoretical value of 4IIc IcG G  is verified by reported measurements where ratio 3.5 is found 

(R
2
 = 0.64) in stead of 4. This lower measured ratio is due to the applied too high value of the 

fracture energy, IcG , obtained as total area under the loading curve.  

If mode I and mode II values are known at combined failure, the following, (eq.(5.7)) applies:  

 

 

2

2
1

III

Ic IIc

KK

K K
   I II

IIcIc

G G

GG
   

 1f f

IIcIc

G G

GG

   
   

 - The next stage, after initial “flow” of confined plasticity near the crack tip, also can be replaced 

by the equivalent linear elastic ultimate stress value. The difference is an internal equilibrium 

system which, as any initial displacement or initial stress, does not affect the ultimate load in 

accordance with the, on virtual work based, limit analysis theorems.  

 - Determining for the strength is the stress combination at the fracture site, which satisfies the, in 

Chapter 2 derived, mixed mode failure criterion, which is shown to follow the critical distortional 

energy criterion for initial crack extension and the Coulomb criterion after “hardening”.  

This mixed mode failure criterion is the consequence of the ultimate uniaxial cohesive strength 

along the micro-crack boundary, causing, oblique, (virtual) crack extension. The theory therefore 

also explains the relations between IcK  and IIcK  in TL- and in RL-direction and the relations 

between the related fracture energies and energy release rates.  

 - For wood, thus far, only singularity type solutions of the Airy stress function are applied in the 

form of:    
0.5

/ 2ij A ijK F r    , while collinear crack extension is assumed. This prevents the 

possibility of derivation and application of the right, exact, mixed mode failure criterion.   

It is shown in § 2.2.2, that this singularity solution, is a special case of the general, exact, non-

singular solution. Therefore wrongly is stated that when r in this equation goes to zero,   goes to 

infinity, but that the product is constant by a constant AK . There is no relation, by the applied 

methods, that confirms this. On the contrary, the derivation of chapter 2 shows, that 0r r  (the 

boundary of the fracture process zone) is constant and the cohesive strength  , also is constant as 

necessity for fracture mechanics type solutions with constant stress intensities. The real singularity 

is given by: AK p c , where the applied stress p becomes infinite, when c approaches zero.  

This follows from the exact derivation of the singularity equation in § 10.2, eq.(10.2.4) shows, that 

the external loading stress:   2
/ 1 /Y a x   becomes infinite when x a , and the crack length:  

 2ca x a    0 , when x a . However, the product: 

      
2

/ 1 / 2 2 /IK Y a x x a Yx x a         is constant, equal to IK Y a   for the 

singularity x a . The smallest possible, clear wood (micro-) crack length: ( )x a , is determining 

for macro-crack extension due to small crack merging. It is known from testing that micro-crack 

multiplication and merging precedes macro-crack extension.  

 - As shown by Continuum Damage Mechanics, (§ 4.4), it is necessary for a right theory, that 

strength analysis is based on the actual stress at the actual intact area, and the strain increase is due 

to damage, caused by the actual stress at the damage location. This explains why approaches based 

on nominal stresses lead to absurdities, as e.g. the assumption of the existence of strain softening, 
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what is against the basic principles of science, making any strength calculation impossible.   

 - The Griffith stress is a nominal stress at the fracture site, what thus necessarily leads to 

inconsistencies. This stress acts, as actual stress, on the intact, uncracked, not ultimate, but elastic 

loaded section, outside the fracture plane. Thus is not related to fracture. For fracture it therefore 

leads to the following paradox: At fracture, the elastic energy level is just high enough to cause 

crack extension of the critical initial crack length. But, at crack extension, the elastic stress level 

(and thus the elastic energy level) goes down, while the crack length increases. Thus there is too 

little energy to extend this, longer, crack further. Thus: the Griffith law is not able to explain crack 

extension at following lower stress levels. The reason of this paradox is that nominal stresses are 

regarded, while fracture laws only apply in real-, thus in actual stresses. For the real stress at the 

fracture site, applies that, at yield drop, there is an increasingly sufficient high actual stress level for 

further fracture as follows from eq.(3.2.10), showing that not only the first derivative but also the 

second derivative is positive for fracture when critical c/b > 1/6.  

 - The fact that, at crack extension, the local strength of adjacent clear material increases by the 

stress spreading effect, and, by that, the local stress remains ultimate, is the reason that the first 

stage of yield drop still follows the nominal Griffith law with constant nominal IcG . The actual 

stress remains determining and micro-crack extension due to clear wood fracture of the always 

ultimate loaded intact material in the fracture plane is the real cause of crack extension and a local, 

ultimate, actual stress criterion, applies as shown in Chapter 3.  

 - The Griffith law does not apply for long overcritical initial crack lengths. The reason of this is 

that the Griffith law is based on the energy of elastic crack opening (or closure) what is not equal to 

the crack formation energy for overcritical crack lengths. The crack closure energy, per unit crack 

length, is lower for long cracks than for the short critical crack length. There thus is an decrease of 

the nominal, thus apparent, stress intensity IcG .  

 - It thus is shown, that strain softening does not exist. Softening called yield drop is only possible 

for the nominal stress, thus for the actual elastic stress outside the fracture plane and thus represent 

elastic unloading outside the fracture plane.  

 - Yield drop, only is possible in a constant strain rate test and is not possible in a constant loading 

rate test and not in a dead load to failure test, and is thus not a material property. The analysis 

shows that the actual stress at the fracture plane increases and shows hardening (by stress 

spreading) up to the constant ultimate level.  

- The fracture energy as area under the yield drop curve should be based on half this area for mode 

I, as is already applied for mode II. The stress should be, as the Griffith stress, related to the whole 

width of the specimen, including the initial crack length, and not only to the still intact part of the 

fracture plane, because then, the fracture energy depends on the applied initial crack length. When 

the fracture energy is related to the whole width, the energy method is correctly based on the energy 

difference of the cracked and the fully un-cracked state of the specimen.   

 - The area of a loading cycle at “yield drop”, divided by the crack length, is indeed equal to the 

fracture energy, because this area is indeed half the area under the yield drop curve. However, this 

energy is proportional to the apparent activation energy of all acting processes in the whole test 

specimen, including visco-elastic and plastic processes, which response should be obtained by 

Deformation Kinetics on an uncracked specimen and then then has to be subtracted to obtain the 

fracture energy. Because this is not applied, and therefore leads to not crack related R-curves, this 

area method should not be applied anymore.  

 - A derivation of the mode I and II yield drop curves, according to the Griffith theory is given 

(chapter 3) The curve can be explained by an optimal small crack merging mechanism of increasing 

small crack lengths, showing that this curve also fully is explained by the ultimate state of the 

decreasing intact clear wood part in the fracture plane. The yield drop curve follows at the start the 

“stable” part of the Griffith locus. This means that every point of the yield drop curve gives the 

Griffith strength. This curve depends on only one parameter, the maximal critical Griffith stress c  
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and therefore depends on the critical crack density. This applies until half way of unloading. The 

fracture energy is down to this point equal to the critical energy release rate. After that, the strength 

of the fracture plane of the test specimen becomes determining due to a crack merging mechanism, 

changing the crack density and intact area of the fracture plane and therefore causing a decrease of 

c  (the top of the yield drop curve) and an apparent decrease of the fracture energy. The strength at 

every point of the “softening” curve is fully determined by the strength of the intact area of the 

fracture plane. yield drop thus is a matter of elastic unloading of the specimen outside the fracture 

zone and yield drop thus is not a material property. 

 - Fracture mechanics of wood and comparable materials appears to be determined by small-crack 

propagation towards the macro-crack tip. This follows e.g. from the same failure criterion for 

“clear” wood and for macro-crack extension. The presence of small-crack propagation is noticeable 

by the Weibull volume effect of timber strength. There is no influence on macro-crack propagation 

of the geometry of notches and sharpness of the macro crack-tip in wood (against orthotropic 

theory). Thus orthotropic fracture mechanics is not determining. This also follows from the nearly 

same fracture toughness and energy release rate for wide and slit notches and the minor influence of 

rounding the notch (also against orthotropic theory). Determining thus is the influence of small 

cracks in the isotropic matrix for the total behavior, having the same influence at the tip of wide, as 

well as, slit notches.  

 - It is shown, that the models applied to wood, as replacement of infinite fracture stresses of the 

singularity approach, as e.g. the Dugdale model, fictitious crack model, J-integral and crack growth 

models are not exact and have to be replaced by the general theory, derived in Chapter 2.  

- The theory shows that the Eurocode design rules for beams with rectangular end notches or joints 

should be corrected to the right real compliance difference and the right measured uniaxial stiffness.  

The verification of the derived theory by measurements shows the excellent agreement. The method 

provides an exact solution and is shown to be generally applicable also for joints and provides as 

simple design equations as wanted  

 - Because the macro-crack kinetics is the same as for clear wood, this small-crack behavior is 

always determining (see last part of Section3.6 of [2]).  

 - For long sub critical initial cracks as in [13], the strength of the intact part of the fracture plane is 

always determining and explains the measured too low apparent stress intensity.  

 - Small-crack merging explains precisely the yield drop curve (of [11]) by the strength (or plastic 

flow stress) of the intact part of the fracture plane, which is always in the  ultimate state and is most 

probable because it requires a lower stress than single macro-crack propagation ([2], Section 3.5 

and 3.6) and shows in rate form the necessary molecular deformation kinetics equation of this 

damage process. (see [11]). 

 

9. Weibull size effect in fracture mechanics of wide angle notched timber beams. 
Because the Weibull size effect is normally not regarded as a fracture mechanics subject, this 

influence is discussed in a separate chapter 9. 

 

9.1. Overview  
A new explanation is given of the strength of wide angled notched timber beams by accounting for 

a Weibull type size effect in fracture mechanics. The strength of wood is described by the 

probability of critical initial small crack lengths. This effect is opposed by toughening by the 

probability of having a less critical crack tip curvature. The toughening effect dominates at the 

different wide angle notched beams showing different high stressed areas by the different notch 

angles and thus different influences of the volume effect. This is shown to explain the other power 

of the depth in eq.(9.18) and (9.19) than applies for the sharp notch value of 0.5 of eq.(9.17). It 

further is shown to explain why for very small dimensions, also for sharp notches, the volume effect 

applies. The explanation by the Weibull effect implies that the strength depends on small crack 

initiation and propagation, in the neighbourhood of the macro crack tip. This initial crack 
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population can be different for full scale members indicating that correction of the applied data is 

necessary and that additional toughness tests have to be done on full scale (or semi full scale) test 

specimens. Small cracks fracture mechanics is discussed in Chapter 10.  

 

9.2. Introduction  
Fracture mechanics of wood is normally restricted to fracture along the grain. Also the mixed mode 

crack follows the weak material axes and only may periodically jump to the next growth layer at a 

weak spot. Thus the direction of the collinear crack propagation is known. As shown in chapter 2, 

the singularity approach gives no right results in this case and the analysis has to be based on linear 

elastic, flat elliptic, crack extension by the maximal tensile stress at the elastic-plastic boundary 

around the small crack. This response at randomized stress raisers near weak spots is indicated by 

the volume effect of the strength. There also is no clear influence on macro-crack propagation of the 

crack geometry and notch form and sharpness of the macro crack tip, showing orthotropic fracture 

mechanics to be not decisive. This also is indicated by the not orthotropic, but isotropic relation 

between mode I stress intensity and strain energy release rate of wood. The determining small crack 

behaviour also follows from the failure criterion of common un-notched wood, being of the same 

form as the theoretical explained fracture mechanics criterion for notched wood.  

The wood matrix is determining for initial failure and not the reinforcement. The failure criterion of  

unnotched wood shows no coupling term between the reinforcements in the main directions 

confirming the orthotropic strength schematization to be not determining. The determining small 

crack dimension follows from the Weibull size effect. The here treated strength of wide angle 

notched beams is an example of a determining size effect in fracture mechanics.  

  
Figure 9.1 - Wide angle notched beam element 

 

The strength analysis of [1] of wide angle notched beams, given in Fig. 9.1, was based on the 

orthotropic Airy stress function. However, despite of the dominant mode I loading, none of the 

solutions of this function are close enough to the measurements to be a real solution. The reason of 

this is the absence of the Weibull size effect in the equations as will be shown in this paragraph. 

The in [1] chosen solutions of the biharmonic Airy stress function are:  

1 1cos( )nr n , 1 1sin( )nr n , 2 2cos( )nr n , 2 2cos( )nr n  resulting in:  

-  

Figure 9.2 - Measured bending strengths for different sizes and notch angles 
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where 
AK  is the stress intensity factor and “r” the distance from the notch root. In the direction of 

crack extension, along the grain ( 0 ), the tensile strength perpendicular to the grain   is  

determining for fracture. The boundary conditions, for the different notch angles a/g, provide  

different values of the power “n” and thus different slopes of the lines in Fig. 9.2. However, it is 

theoretically not possible that these lines intersect trough one point, as is measured, because the 

different boundary conditions by the different notch angles cannot be satisfied at the same time and 

the chosen mathematical solution of [1] thus has to be rejected. The fact that these lines cross one 

point, at the elementary volume, proves the existence of a volume effect of the strength. This is  

introduced in the fracture mechanics energy method calculation in § 9.4. In § 9.3, the derivation of 

the size effect is given to show the equivalent derivation of the toughening size effect in § 9.4.  

 

9.3. Size effect 
Due to the initial small crack distribution, clear wood shows a brittle like failure for tension and 

shear. According to the Weibull model, the probability of rupture, due to propagation of the biggest 

crack in an elementary volume 0V  is equal to 01 ( )P  , when 0P  is the probability of survival. For 

a volume V containing 0/N V V  elementary volumes the failure probability is:  

     0 0 0 01 1 1 1 1
N

sP P P P P        . Thus    0 0ln 1 ln 1sP N P NP      because 0P  << 1. 

Thus the probability of survival of a specimen with volume V, loaded by a constant tensile stress  , 

as in the standard tensile test, is given by: 

 0

0 0

( ) exp exp

k

s

V
P V NP

V





  
      
   

  (9.2) 

where    0 0/
k

P     is chosen, because the power law of   may represent any function of   

around a chosen stress value as e.g. the mean failure stress (see § 4.4 for the proof).  

For a stress distribution, eq.(9.2) becomes:  
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This specimen has an equal probability of survival as the standard test specimen eq.(9.2), when the 

exponents are equal thus when:  
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  (9.4) 

For a constant stress ( , , )x y z  , the specimen strength thus will decrease with its volume V 

according to:  
1/k

s
s

V

V
 

 
  

 
 (9.5) 

where s  is the mean strength of the specimen with volume sV . The power k depends on the 

coefficient of variation /s   according to:  
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  (9.6) 

From the row-expansion of the Gamma-functions it can be seen that:  
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where f( /s  ) is normally a little varying function. Thus: 1/ / (1.2 )k s     

For a stress distribution, eq.(9.4) becomes:  

 

0 0 0

, ,
kk k k

m m s
ch s

m

x y z
dxdydz V V

  

   

      
       

      
   (9.8) 

where m  is the determining maximal stress in volume V and  /
k

ch mV dV   , a characteristic 

volume. Eq.(9.8) thus becomes:  
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  (9.9) 

This applies for the strength of common unnotched specimens.   

This strength also is determined by fracture mechanics. The tensile strength is e.g.: 

Ic
t

K
f

c
    or   ,

s
t t s

c
f f

c
 .  (9.10)  

where IcK  is the stress intensity factor. 

Substitution of the strength according to eq.(9.5) (or eq.(9.9)) leads to:  
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This equation gives the probability of a critical Griffith crack length c leading to fracture. Also in 

this case, a crack toughening mechanism is thinkable, discussed in § 9.4, leading to the opposite 

volume effect with a negative value of the exponent 1/k. This can not be distinguished and the 

resultant value of 1/k then is given by eq.(9.11). Because for every type of wood material the value 

of c is specific, determining the specimen strength, eq.(9.9), as shortcut of eq.(9.11), is applied in 

practice.  

According to eq.(2.3.7), the stress intensity factor of eq.(9.10) is: / 2Ic tK r  where t  is the 

equivalent cohesion strength at the crack tip boundary and r  is the radius of the elastic-plastic 

boundary of the crack tip zone. A constant stress intensity factor IcK means that t r  is constant 

and only the crack length c is a variable, as for brittle fracture. Toughening means an increase of the 

plastic zone, thus of r of the small cracks, within the characteristic volume. This influence is visible 

at the different wide angle notches as discussed in § 9.4.   

Because fracture across the grain is tough and the lengths of applied beams don’t vary much, the 

size effect of the length dimension is small and the volume effect for bending is replaced by a 

height effect of the beam only. It is postulated that this absence of a width effect is explained by the 

constant widths of 2 'b of 2 planes of weakness adjacent to the free sides of the beam due to the 

cutting action at manufacturing. Then:    
1/ 1/

/ 2 ' / 2 '
k k

s ch sV V b h l b hl   
1/

/
k

sh h , becomes the 

height factor of the Codes. This width effect is applied in § 9.4.  

 

9.4. Size effect of wide notched beams 
The analysis of the strength of notched beams can be based on the energy method where the critical 

fracture energy is found from the difference of the work done by the constant force due to its 

displacement by a small crack extension minus the increase of the strain energy due to this 

displacement. According to this approach of [3], [4], and § 6, the bending stress m  at the end of 

the notched beam at l D  in Fig. 9.1 is:  



Exact Fracture Mechanics theory 

 

53 

 

 
2

4

6 6 /

( )

f c
m

V D EG D

b D




  
 



   (9.12) 

when the notch is not close to the support. In [1] is chosen:   = d/D = 0.5, what means that d = a. 

Further the length is l = 2D when g/a = 0 and 2, while l = 4D for g/a = 4 in Fig. 9.1. E is the 

modulus of elasticity and cG  the critical energy release rate, given in [3]. Eq.(9.12) applies for the 

rectangular notch (g = 0). For wide notch angles a more complicated expression applies because of 

the changing stiffness over length l  of the crack extension. However, for given dimensions and 

loading, the basic form of the equation is the same as eq.(9.12), thus:  

/m cB EG D    (9.13)  

where B is a constant depending on dimensions and notch angle. According to §2 and [3] is, as 

mentioned, c c tEG K r  , where 
t  is the equivalent cohesion strength and the crack tip 

radius r  is the only parameter of the notch strength. The volume effect depending on the stress 

follows from § 9.3 and the analysis thus can be based on the flow stress and the characteristic 

volume around the notch tip, For the probability of a critical value of r, of the small initial cracks 

within the high stressed characteristic volume around the notch tip, the probabilistic reasoning of § 

9.3 can be repeated as follows. The probability of having a critical flaw curvature 1/ r  in an 

elementary volume 0V  is equal to 01 (1/ )P r , when 0P  is the survival probability. For a volume V 

containing 0/N V V  elementary volumes the survival probability is in the same way:  
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where    0 01/ /
k

P r r r , because the power law may represent any function in 1/r. At “flow”, this 

probability is not a function of  , but of the flow strain, given by a critical r  

Equal exponents for the same probability of failure in two cases now lead to:  
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and eq.(9.13) becomes:  
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For the notch angle of 90°, (g = 0 in Fig. 9.1), or for smaller angles, the high stressed elastic region 

around the crack tip is, as the fracture process zone itself, independent of the beam dimensions. 

Thus in characteristic dimensions 0' ' 'V b l h V   and eq.(9.16) becomes:  

0.5

0

0

m m

D

D
 


 

  
 

. (9.17) 

independent of a volume effect. For the widest notch angle of 166° (g/a = 4), there is a small stress 

gradient over a large area and V is proportional to the beam dimensions. Thus: V (:) b∙d∙l = 

γD∙δD∙βD = γ∙β·δ 3D  and: V/ 0V  = (γδβ 3D /γδβ 3
0D ) =  

3

0/D D . Thus is, with 1/k = 0.18:  
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For the angle of 153.40°, (g/a = 2), the high stressed region dimensions becomes proportional to the 

dimensions b and D and: 

V/ 0V  = (bdl)/( 0 0b d l ) = ( 2D / 2
0D ) = ( 2D / 2

0D ) and with1/k = 0.18 is: 
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It follows from Fig. 9.2, that the values of exponents of – 0.5, - 0.32, and -0.23 are the same as 

measured. The coefficient of variation of the tests must have been: 1.2∙0.18 = 0.22, as common for 

wood. According to the incomplete solution of [1], discussed § 9.2, these values of the exponents 

were respectively - 0.437, - 0.363 and - 0.327, thus, too far away from the measurements.   

The explanation of no volume effect of sharp notches due to the invariant characteristic volume, 

independent of the beam dimensions, explains also why for very small beams, also for sharp 

notches, there is a volume effect because then the beam dimensions are restrictive for the 

characteristic volume. As known, the exponent may also change from – 0.5 to -0.23 with decrease 

of the beam dimensions. This is measured and e.g. discussed at pg. 85 of [2]. The constant 

dimensions of the fracture process zone act as a relative increase of the plastic zone for decreasing 

test beam dimensions and it appears that toughening is the explanation of this volume effect.  

The lines in Fig. 9.2 intersect at the elementary Weibull volume wherefore the depth dimension is 
0.610 4 mm with a material bending strength of 147 MPa. 

 

9.5. Conclusions regarding the size effect 
- A new explanation is given of the strength of wide angled notched beams of [1] by introducing the 

Weibull type size effect in fracture mechanics, based on the critical small crack length, opposed by 

the toughening curvature of the initial small cracks near the high stressed macro notch tip zone.  

- For sharp notch angles, up to 90°, there is no volume effect due to the constant characteristic 

volume, at the fracture process zone. For wider notch angles, the peak stresses and stress gradients 

become lower and are divided over a larger region and influenced by the dimensions of the 

specimen and thus a volume effect correction applies.  

- The intersect of the three lines in Fig. 9.2, with different values of “n” of eq.(9.1), due to different 

boundary conditions, which can not apply at the same time for the different notch angles, thus can 

not be explained by the boundary value analysis. This intersect only can be explained to be due to 

the volume effect of the strength indicating failure by small crack extension within the high stressed 

region at the notch tip. 

- The measured values of the powers of the depths (or the slopes of the lines of Fig. 9.2) are 

precisely explained by applying the Energy approach and the volume effect correction according to:  
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10. Small crack fracture mechanics 
 10.1. Introduction. 
Because small crack behavior is a new subject and is shown to be always determining for fracture, 

it is discussed in a separate chapter as basis for a necessary new approach.   

That small crack extension is determining is e.g. indicated by the volume effect of the strength and 
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by the no clear influence on macro-crack propagation of the crack geometry and sharpness of the 

crack-tip of notches in wood. Also the only possible explanation of yield drop and the dynamics of 

crack propagation by micro crack extension and small crack merging shows this behavior. The 

failure criterion of clear wood and of timber [1], [2], and the failure criterion by a single macro 

notch [3], [4], are the same, showing that small-crack extension towards the macro-crack tip is the 

cause of macro-crack extension. This is confirmed by the fact that the stress intensity factor is 

independent on the macro-form and dimensions of the notch. It also is confirmed by molecular 

deformation kinetics, showing the same processes in clear- and in notched wood (see discussion 

Annexes B on: iews.nl). Also the exact solutions given in [4] and below of the geometric correction 

factor and of [5] and § 3.7, of the strength behavior of long post-critical crack lengths is totally 

based on small crack behavior. The small-crack merging mechanism explains, in [3] and in § 3.6 

and § 3.5, precisely the mode I yield drop curves of [6]. The failure criterion [1], shows no coupling 

term between the normal stresses at “flow”, and thus shows no dowel action of the reinforcements 

and there only is a direct interaction of the reinforcement with the matrix and the matrix stresses 

determine the stresses in the reinforcements. Because the initial small cracks in wood are in the 

matrix and start to extend in the matrix, the stress equilibrium condition of the isotropic matrix by 

the matrix-stresses has to be regarded. The isotropic solution of the matrix stresses thus has to be 

regarded in the end state. The total stresses, due to the reinforcement, then follow by multiplication 

of an elastic constants factor e.g. derived in Chapter 2 and § 2 of [3]..  

In [4], and in § 10.2, the exact derivation of the geometric correction factor of the center notched 

test specimen is given, based on small cracks merging. As known, this geometric correction factor 

accounts for the difference of finite specimen dimensions with respect to the notch in an infinite 

plate. Because, contrarily to macro-crack extension, unloading by yield drop (wrongly called 

“softening”) by step wise small crack merging is possible at any low mean stress level, it can be 

postulated that small crack merging always takes place in the high loaded zone near the macro-

crack tip and that macro-crack extension is always due to small crack extension towards the macro-

crack tip.  

 

10.2. Derivation of the geometric correction factor of the center notched specimen 

As mentioned, at eq.(2.3.10), fracture mechanics laws only apply when 0r , (process zone) and thus 

t , (strength) are constant in: 0 / 2IC y c tK c r     . The singularity approach, (called 

LEFM), as derived in § 2.2.2, as special case of the exact solution, is thus wrongly based on 0 0r  , 

and an infinite strength t  . Necessary thus is that y  , 0cc   at the singularity for the 

right solution. Therefore in the following, the necessary exact derivation of the right geometric 

correction factor is given:  

For a crack in an infinite plate, which is loaded by a tensile stress  , the stress distribution along 

the fracture plane, line AB of Fig. 10.2, is e.g.:  

 
,

2
1 /

Y

a x


  


  x a     (10.2.1)  

where 2a  is the crack length and x is the distance from the center of the crack. This stress 

distribution is according to the solution of the Airy stress function of [7]. Such solution satisfies the 

equilibrium, compatibility and boundary conditions and thus is an exact (limit analysis) solution.  

To obtain the ultimate state of the specimen given in Fig. 10.1, we may cut out the specimen 

dimensions from the infinite plate, as is given in Fig. 10.2. Next we may multiply the stress ,y   by 

a (by definition stress independent) factor Y with such magnitude that the resultant shear loading 2R 

in the planes AD and BC of Fig. 10.2 becomes zero. There remains an equilibrium system in those 

vertical planes giving an internal equilibrium system in the cut-out specimen which, as such, has no 

influence on the strength. Because limit analysis applies with virtual deformations there is no effect 
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of initial stresses or deformations on the limit collapse load.. As condition for zero values of R, the 

sum of the normal stresses in the upper plane AB should be equal and opposite to the normal 

stresses in the bottom plane CD, giving: 

    
/2 /2

222 2 / 1 ( / ) 1 2 /

W W

y

a a

W dx Y a x dx Y W a W         ,  (10.2.2)   

and the stress multiplication factor thus is:  

21/ 1 (2 / )Y a W  .   (10.2.3) 

The stress intensity factor 
IK  due to the critical small crack concentration follows from: 

        
2

2 / 1 / 2 2 /I y c yK a x a Y a x x a Yx x a                (10.2.4) 

As shown § 3.6 and in [3], the small crack merging towards the macro-crack tip causes the macro-

crack extension. When the nearest, determining small crack tip is situated at a distance x, then the 

one sided small crack merging distance to the macro-crack tip is x a , which is equal to half the   

small crack length c of row A of fig. 3.8. Thus: ( )c x a  , and total 2( )x a  applies, of both sides  

  
Fig. 10.1. CN test specimen Fig. 10.2. Cut out of the specimen from the infinite plate  

 

 

    Table 10.1. Comparison of linear elastic Geometric correction factors 

2 /a W   sec /Y a W   
2

1/ 1 2 /Y a W   Y= ( / ) tan( / )W a a W   

0.1 1.006 1.005 1.004 

0.2 1.025 1.021 1.016 

0.3 1.059 1.048 1.040 

0.4 1.112 1.091 1.075 

0.5 1.189 1.155 1.128 

0.6 1.304 1.250 1.208 

0.8 1.799 1.667 1.565 

0.9 2.528 2.294 2.113 

0.95 3.570 3.203 2.918 

 Feddersen 

Koiter et al 

Limit analysis 

solution, eq.(10.2.3) 

Irwin 

 



Exact Fracture Mechanics theory 

 

57 

 

of two sided macro-crack extension of the initial crack length of 2a . This also applies when the 

macro crack-tip has become sharp enough to take part in the crack merging process. Then all active 

crack tips extend over a distance c, which is equal to ( )c x a   in the analysis.   

For x a , the lowest, thus first occurring, initial flow value for IK  of eq.(10.2.4), becomes:  

IK Y a     (10.2.5) 

This is identical to the results of other methods, showing the mathematical flat crack, singularity 

solution, to apply for the smallest initial small crack system and to represent clear wood fracture at 

the start of “flow” and crack extension (see also § 3.6 and § 3.10). Thus the derived geometric 

correction factor Y is comparable to the other solutions of Tada, Feddersen, Koiter, Isida and Irwin 

[8]. The exact value of Y, according to eq.(10.2.3): 21/ 1 (2 / )Y a W  , lies intermediate between 

the, in [8] given, values of Feddersen and Koiter et al. around  sec /Y a W  and the solution of 

Irwin: ( / ) tan( / )W a a W  . In Table 10.1, eq.(10.2.3) is compared with the solution of Irwin 

and the usual applied Feddersen equation.  The precise description by the exact derivation shows 

that small crack merging does not only explains yield drop, but is the basic mechanism of all crack 

extension. This is discussed in chapter 3. The small crack limit behavior is derived in § 10.3. 

The possibilities of the singularity approach are very limited and extension of the theory for e.g. 

crack bridging and mixed mode loading are not possible at assumed collinear crack extension.   

 

10.3. Small crack limit strength behavior  
 10.3.1. Small crack limit dimensions 
The interpretation of the strength data-line of Fig. 10.3 on geometrically similar specimens of 

Bazant is to regard the inclined line to represent LEFM theory, the horizontal line to be the strength 

theory and the curved, connecting line to follow nonlinear fracture theory. However, there is no 

difference between nonlinear and linear elastic (LEFM) fracture mechanics. For both the linear 

elastic - full plastic approach of limit analysis applies. The full-plastic zone of the elastic-full plastic 

approach exists as failure criterion, by a single curve in stress space as shown in Fig. 10.3. In this 

figure of [9], is d/d0, the ratio of specimen size to the fracture process zone size. But, because the 

line is the result of volume effect tests, the initial crack length is proportional to the test-specimen 

length. Thus, 0/d d  also can be regarded to be the ratio: initial open crack length, to the process 

zone size. Then, for small values of d, this 0/d d ratio also may represent the critical small crack 

density in a macro specimen (d also is small crack interspace). The curved line of Fig. 10.3, follows 

the equation:  

 0 0ln ln 0.5ln 1 /d d       (10.3.1)  

This can be written:  
0.5 0.5

0 0

0 0 0

ln ln ln
d d d

d d d







    
     

    
   (10.3.2)  

or: 0 0 0( ) cd d d K      ,   (10.3.3) 

This confirms that the curve represents the stress intensity as ultimate state with cK  as critical  

stress intensity factor as should be for values of 0/d d >>1. For these higher values the curved line 

approaches the drawn straight tangent line  0 0ln ln 0.5 ln 1 /d d      0 0ln 0.5ln /d d   with 

the necessary slope of the curve: (Bazant - curve) 

0

0

ln( / )
0.5

ln( / )d d

 
 


 as limit. The real slope however is: 

  0.5

0
0

0 0 0 0 0 0 0 0

ln 1 /ln ln( / ) 0.5 0.5

ln( / ) ( / ) ( / ) ( / ) 1 / 1 /

d dd d

d d d d d d d d d d d d d d

  


    
    

    
   (10.3.4) 
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Fig. 10.3. From [9]. Limit LEFM behavior as correction of the interpretation of [9].  

 

This slope is: – 0.5 for 
0d d  and this slope is zero when 0d  . 

This shows that for the whole curve LEFM applies and it is an indication that, at zero open crack 

dimensions, thus for: d = 0, the clear wood ultimate strength theory still follows LEFM, because it 

applies also for the constant initial length 
0d  (the fracture process zone length).  

After first yield drop, to half way unloading, the strength theory further applies for further 

unloading by crack extension. Similar to steel, where yield drop is due to dislocation multiplication 

and dislocation breakaway, applies for wood, that yield drop is due to Micro-crack multiplication 

(as fracture zone 
0d ) and micro- crack propagation and merging. The clear wood Wu-equation then 

may be expressed in stresses (see [2]) in stead of in stress intensities.  

The in § 2.3 derived equation: 
2

2 2
0 0

1
/ 2

 
y xy

t t

 

   
, with 0 02 /r c   for collinear crack extension, can only be written as: 

 

   

2
2

2 2
0

0

1
/ 2 2

xyy I II

Ict IIct

cc K K

Kr Kr

  

   
    ,  

when 0r , the radius of the fracture process zone is constant. In the limit case of clear wood micro-

crack failure, when 02c r , the equation becomes, with 2u t  , for the isotropic matrix:  

2

2
1

y xy

t u

 

 
   (10.3.4)  

 

10.3.2. Small crack failure criterion 
Softening called yield drop is explained by the crack merging mechanism and discussed for mode I 

and II, in Chapter 3. Because the isotropic matrix fails before the reinforcement, limit analysis has 

to be applied for the isotropic stresses in the isotropic matrix. This is not followed by all other 

fracture mechanics approaches, which therefore don’t satisfy the failure criterion and are not able to 

give the right exact mixed mode fracture criterion. At initial “flow” of the matrix, the stresses of the 

still elastic reinforcement follow in proportion the matrix stresses. That the matrix is first 

determining follows e.g. for Balsa wood, which is highly orthotropic, but is light, thus has a low 

reinforcement content and shows total failure soon after matrix failure and thus shows at failure the 

isotropic ratio of / 2IIc IcK K   of the isotropic matrix material. But also for strong clear wood 

which is failing by shear by single oblique crack extension according to Fig. 2.3.2, it appears that 

the start of crack extension shows the isotropic oblique angle, showing the matrix to be determining 

for initial failure.  

The truss action, at bending failure of a beam, causes a negative contraction coefficient in the 

bending tension zone. This shows that the reinforcement holds, even after flow in compression and 
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stress redistribution, with increased tension in the reinforcement. It is therefore a requirement for an 

exact orthotropic solution of the total applied stress, applicable to wood, to also satisfy the isotropic 

flow solution of matrix-stresses and to look at possible stress redistributions.  

As discussed at § 5.2 (and Section A), the (small crack) failure criterion for shear with tension is: 

eq.(5.1) or eq.(5.2), which becomes, as limit behavior, equal to the Wu-equation when due to full 

hardening 1c  in eq.(5.2). Full hardening is possible when the test rig is stiff enough to remain 

stable during test. The solution of the crack problem of Irwin as summation of in plane and 

antiplane solutions in order to use (with minor adaptions) isotropic stress functions for the 

orthotropic case, and to apply descriptions in the three characteristic modes and to sum the result for 

the general mixed mode case, is not right for wood. It misses e.g. the interaction terms and the 

failure equation, eq.(5.2), is not orthotropic, because it is not quadratic but contains a third degree 

term and thus does not show orthotropic symmetry. This coupling term is absent in the general 

accepted solutions. The strong influence of compression in e.g. fig. 5.2, therefore cannot be given. 

The stress function which leads directly to the Wu-equation is given in § 2.3 and in [3]. Necessary 

are the stresses at the crack boundary to know the mode of failure. This follows from the exact 

derivation in chapter 2 and is applied by numerical simulation by the VCC- technique of the finite 

element method, and thus can not be based on a separate calculation of the energy release rates of 

the normal stress in the opening mode and of the shear stress in the sliding mode according to the 

method of Sih, Paris, Irwin by giving the sum of separate solutions of the 3 modes, without 

interactions, (as e.g. 2

266 2 63F   ) what is assumed to be possible by assumed isotropic and 

orthotropic symmetry. Thus the, not orthotropic, “mixed mode”,  interactions, as given by Fig. 5.1 

and 5.2, can not be described by other methods.   

 

10.4. Conclusions regarding small crack fracture mechanics 
- Part of the conclusions are given in Chapter 8.  

- The right derivation is given of the geometric correction factor of the center notched specimen, 

based on small-crack extension to the macro-crack tip, and based on a constant finite ultimate 

cohesion strength and constant dimensions of the process zone and thus not based on an infinite 

tensile strength at zero process zone dimensions of the other derivation methods.  

- A new interpretation is given of the transition of strength theory to fracture mechanics theory of 

Bazant based on tests on geometrically similar specimens. It follows that the whole curve represents 

LEFM (linear elastic fracture mechanics) and shows that, at zero open crack dimensions, the clear 

wood ultimate strength theory still follows LEFM, because it applies also for the constant initial 

length of the fracture process zone length.  

- Eq.(10.3.3) shows that the crack length consist of an open part plus the process zone length.  

- There is no difference between linear elastic- and non-linear fracture mechanics because for both 

approaches linear elastic behavior is regarded up to failure and plastic flow. This is possible 

because by the virtual work approach at the ultimate state there is no influence on the strength 

depending on the loading path followed and of initial stresses and internal equilibrium systems. The 

critical energy release rate is in both cases determined by plastic behavior. In fact always the linear 

full plastic approach of limit analysis applies for the boundary value approach and ultimate state at 

the crack-tip boundary.  

- It is confirmed:  

- that limit analysis applies, with elastic-full plastic behavior and may be regarded to be elastic up to 

fracture, at the confined plastic zone. 

- that wood behaves as a reinforced material, and the solutions of the isotropic Airy stress function 

of the matrix stresses as well as the orthotropic Airy stress function of the total stresses are needed,  

- that reaction kinetics and the general applicable failure criterion indicate that, small-crack 

processes are always determining for fracture.   

- The explanation of the failure criterion is given. All other methods are not able to give and explain 

the right failure criterion for combined “mixed mode” failure 



Exact Fracture Mechanics theory 

 

60 

 

10.5. References  
[1] van der Put T.A.C.M., A continuum failure criterion applicable to wood, J Wood Sci (2009) 

55:315–322, (A(2009).  

[2] van der Put T.A.C.M., A general failure criterion for wood, Proc. 15
th

 CIB-lUFRO Timber 

Engineering Group Meeting, Boras, May 1982, A(1982a),  

[3] van der Put T.A.C.M., A new fracture mechanics theory of wood, Nova Science Publishers, Inc. 

New York,  C(2011a), or more complete:  

T.A.C.M. van der Put  Exact and complete Fracture Mechanics of wood. Theory extension and 

synthesis of all series C publications  

[4] van der Put T.A.C.M., Exact derivation of the geometric correction factor of the center notched 

test specimen, based on small cracks merging as explanation of yield drop; Int. J. Comp. Eng. 

Res. Vol. 04, Issue, 7, July 2014, C(2014a).  

[5] van der Put T.A.C.M., Discussion of: “Mode II fracture mechanics properties of wood measured 

by the asymmetric four-point bending test using a single-edge-notched specimen of H Yoshihara 

in Eng. Frac. Mech. 75 pp 4727-4739” in Eng. Frac. Mech. 90 pp 172-179, C(2012).  

[6] Boström L, Method for determination of the softening behavior of wood etc. Thesis, Report 

TVBM-1012, Lund, Sweden, (1992). 

[7] Westergaard H.M., Trans. ASME, J. Appl. Mech. Vol. 61, 1939, pp A49 – A53.  

[8] Tada H., Paris .P.C. and Irwin G,R. The stress analysis of Cracks Handbook”. Del Research 

Corporation, St. Louis, Missouri, 1985, H. Tada, Paris and G.R. Irwin.  

[9] I. Smith, E. Landis, M. Gong, Fracture and Fatigue in Wood, J. Wiley & Sns.  

[10] van der Put T.A.C.M. (2010): Failure criterion for timber beams loaded in bending, 

compression and shear, Wood Material Science & Engineering, 5:1, 41-49  

[11] van der Put T.A.C.M., Deformation and damage processes in wood, Delft University Press, 

The Netherlands, (1989), B(1989a).   

[12] Yoshihara, H. (2012) Mode II critical stress intensity factor of wood measured by the 

asymmetric four-point bending test of single-edge-notched specimen while considering an 

additional crack length, Holzforschung, 66, pp 989-992.  

[13] Yoshihara H. (2008) Mode II fracture mechanics properties of wood measured by the 

asymmetric four-point bending test using a single-edge-notched specimen, Eng. Frac. Mech. 75 

pp.4727-4739.  

[14] van der Put T.A.C.M. (1974) Breukcriterium voor beton als ondergrens van de sterkte bepaald 

volgens de evenwichtsmethode Cement (1974) XXVI No10 pp 420-421 

 

11. Conclusions overview 
In chapter 8, conclusions are given regarding chapters 1 to 7.  

Conclusions of chapter 9, regarding the size effect, are given in § 9.5 

Conclusions of chapter 10 regarding small crack fracture are given in § 10.4. 

 

 

Appendix A:  
The dynamics of crack propagation 
The dynamic extension of the Griffith theory is given by Berry in: Some kinetic considerations of 

the Griffith  criterion for fracture I and II: J. Mech. Phys. Solids, 8, 194-206 and 207-216. 

Regarding the test specimen of fig. 3.1, assuming plane stress, the work done by the external forces 

is:      2 21 2 / / 2i i iW bl c bl E       (A1) 

Including the apparent surface energy: 4 ic  gives as total energy:  
2 21 2 / / 2 4i i i iV bl c bl E c          (A2) 

When the crack extends at constant i , the total energy V will be 
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2 21 2 / / 2 4i i iV bl c bl E c K           (A3) 

Where K is the stored kinetic energy. The work 
iW W  done by 

i  dureing the extension is: 

( )i i iW W bl        (A4) 

where , i   are the strains corresponding to crack lengths , ic c . Thus:  
2 2 22 ( ) /i i iW W c c E      (A5) 

Equating this to 
iV V  gives: 

2 2 2( ) / 4 ( )i i ic c E c c K        (A6) 

Writing:    24 / i in E c      this is:  
2 2(1 / )[1 ( 1) / ] /i i iK c c c n c c E        (A7) 

On dimensional grounds is:  
2 2 2 2/ 2i cK k c v E    (A8) 

where /cv dc dt   velocity of crack extension,   the density and k is a constant.  

From  the last 2 equations follows:  

   2 22
1 1 1 1 1 1i i i i

c m

E c c c c
v n v n

k c c c c





      
             

      
   (A9) 

where 2 / 0.38 /mv E k E     is the maximum velocity of crack extension. 

Differentiating eq.(A9) gives the acceleration  of the moving crack tip:  

 
2

2 1c i idv Ec c
n n

dt k c c





 
   

 
    (A10) 

It follows from eq.(A9) that the crack velocity is zero when ic c  and from eq.(A10), that for n = 2,  

the acceleration of crack extension is zero also. For n = 2 is 2 2i ic E   , which is the Griffith 

equation. Thus the crack of Griffith length is in unstable equilibrium but does not propagate. For 

2n  , is i g  , the Griffith stress, the crack propagates.     

 

 

Appendix B:  
Direction of crack propagation  
The in Chapter 2 given derivation of the mixed mode fracture criterion was for the first time given 

for concrete in:  

van der Put T.A.C.M. (1974) Breukcriterium voor beton als ondergrens van de sterkte bepaald 

volgens de evenwichtsmethode Cement (1974) XXVI No10 pp 420-421, (in Dutch). i.e.:  

Fracture criterion for concrete as lower bound of the strength, determined by the limit analysis 

equilibrium method. 

Also a dissertation was then written and handed over to prof. Bruggeling of Delft University. 

Although there never was a reaction, he should be able to give information about the progress of 

this project. 

Figure B.1, of  

Fracture Mechanics of Concrete Structures, de Borst et al (eds)© 2001 Swets & Zeitlinger, Lisse, 

ISBN 90 2651 825 0, based on: 

Shear behavior in fracture process zone of concrete; Y. Shinohara, Structural Engineering Research 

Center, Tokyo Institute of Technology, Tokyo, Japan  

Shows oblique crack extension due to mixed mode loading. 

 

If specimens were not pre-cracked for shear tests under constant vertical load, it was found that a 

diagonal cracking always nucleated and extended from the bottom of the right notch, as shown in 

the left of Figure  B.1. According to FEM analysis stated in section 2, the maximum principal stress 

occurred at the right notch tip and the direction normal to it is also shown in Figure B.1. The initial  
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Fig. B.1. Double-edge notched specimen loaded in tension and shear, in concrete. 

 Square 200x200x100 specimen 

 

crack propagated in the direction normal to the maximum principal stress. This means the shear 

failure is caused by tensile stress, according to theory. The crack propagation is due to the tensile 

stresses and perpendicular to the direction of this principal stress. With further increasing shear 

displacement, the second diagonal crack ran from the top of the left notch, so that a compressive 

strut eventually formed in the specimen. In that case, the compressive shear load would be carried 

by the intact part between two diagonally overlapping cracks, as shown in the right of Figure 10.  

 

 


