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1. Introduction and justification  

Strength, deformation and other important properties of wood materials are time dependent 

and dependent on physical properties as temperature and moisture content what only can 

be explained and described by the acting physical and chemical processes, thus by statisti-

cal mechanics and reaction  kinetics [1], and as shown, the in [2] (Section B.1) developed 

limit analysis equilibrium theory of deformation kinetics is fundamental and explains all 

aspects as creep, damage, aging, annealing [3], nucleation B(2011), transformations as 

glass transition, rubber behavior, diffusion, etc. by the same constitutive equation. The 

consequence is that the contradictory phenomenological models, as the free volume model 

for glass-transition, the instability model of nucleation, the tunneling model of activation 

and the extrapolated flexible chain model, with non-existent linear visco-elastic relaxation 

spectra for rubber behavior and creep of materials, etc., have no meaning and are rejected 

by this exact approach.  

It is shown that wood does not follow real transformation up to the very high temperatures 

where decomposition starts and is in the glass-state, even at these high temperatures.  

It is evident for wood, as a glassy and crystalline polymer, that time dependent behavior 

can not be explained and described by flexible chain models of dilute solutions (rubber 

theory) or by other Newtonian visco-elastic models (as is still generally practice). Linear 

visco-elasticity does not exist and also for real rubbers, the “rubber theory” does not apply 

because this phenomenological model is questionable as shown in [4] and in Appendix I.  

Regarding the models, proposed for wood, the following can be stated:  

 The, in literature (C. Huet, [16], COST 508, and EC-MA1B report), proposed phenom-

enological multi-transitions model, based on a spectrum of transformations, cannot ex-

ist because the response below a transformation cannot interact or contribute to the re-

sponse above that transformation, and thus a spectral interaction cannot exist. But, also 

the spectral, parabolic, form of the loss tangent can not exist. In fact, a constant value 

of the loss tangent is measured for all structural materials like wood (see fig. 3.8, ex-

plained by theory [2]). The chosen Cole-Cole-circle (or parabola) for the loss tangent, 

represents not real, but idealized (non-existent) material behavior. As known from lit-

erature, this plot only can partly and roughly represent phenomenological, the response 

in the zone of glass-rubber transition to disappearing stiffness of rubbers and solutions, 

and thus may roughly represent the low frequency end of the glass-transition zone of a 

lightly cross-linked rubber or gel, showing the best such a broad curved loss compli-

ance. Thus, the Cole-Cole plot is not able to represent the glass-state and the leather-

state (which may be approximated for wet, saturated, wood at very high loading and 

temperature). The not existent multi Cole-Cole-parabolic logarithmic decrements are 

introduced to indicate the supposed separate glass-transitions of e.g. cellulose, hemicel-

luloses and  lignin in wood, as stated in [16] and related publications. However, wood 

behaves like a copolymer and can only show one glass transition (see e.g. fig. 5.1) and 

not the transitions of the separated wood components and the multi-glass-transitions 

model or multi-Cole-Cole plot thus has no theoretical and physical background and is 

not able to predict behavior and thus should be forgotten.  

 The same applies for the “Tammann-Hesse law” [16], being identical to the empirical 

nucleation and step-growth equation of the liquid-solid phase transformation, and thus 

can not be proposed to be the generalization to all kinds of transformations, as is done. 

Other transformations don’t show the property changes like the liquid-solid transfor-

mation and no transformation needs infinite energy, (according to the empirical Tam-

mann-Hesse law), to reach equilibrium. This choice of liquid-like behavior can not be 

right for structural polymers like wood, but also the Tammann-Hesse equation itself, 

thus the chosen empirical nucleation model, appears to be theoretically not right, as is 
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shown here in 2.5 and 2.6. This transformation model further is based on a first order 

transformation equation (the nucleation of the liquid-solid phase), although it is pro-

posed in all publications (mentioned e.g. in [16]) to apply for glass-transitions, what 

are second order transformations (depending on other physical parameters than the first 

order transformations). Therefore this “Tammann-Hesse law” also can not replace the 

WLF-equation of glass transition, as is proposed, also because the WLF-equation is not 

a replaceable empirical equation any more, but is a theoretical expression, based on the 

exact explanation of certain flow behavior near glass-transition as is derived by the 

equilibrium theory of reaction kinetics, see [2] and [3] or Section B.1 and Section B.3.  

 Similar remarks apply for the, e.g. in [16] proposed, phenomenological Zimm model 

and other models of dilute solutions, (Rilem), that have nothing to do with transfor-

mations and nothing to do with the physical behavior of wood that is not a solution.  

 This also applies for the, also for wood (E.C.- MA1B, Rilem, reports), introduced solu-

tions model of paper science, what is identical to the well-known theoretical “regular 

solutions” model, where the transition between two different phases is based on the 

change of the lattice coordination number, what is the change of the way of packing of 

the atoms, and thus on the change of the enthalpy and thus is based on a first order 

transformation. This wrongly is used to estimate the glass transition temperature be-

cause a glass transition is a second order transition (showing no enthalpy jump).  

 Because the models above are not able to fit data, the power law fit is always used in-

stead. The power law is shown here to give the first two terms of an expansion around 

some measured value by any formula (see 2.5.3). The power law thus may represent 

any model, when it is applied in a limited range of the variable around the measure-

ment, or in this case, in a relatively small time range around a mean time value. Thus, 

the power law cannot be applied for extrapolation of behavior to longer times as 

wrongly is done for creep, etc. Because of the lack of a theoretical meaning and be-

cause of the impossibility to predict behavior, even not of a single test-procedure, the 

power law fitting procedure, is theoretical useless. The “power law” is the oldest fitting 

formula of time dependent behavior, used before 1800, and is as old as the first publi-

cation of this subject and appears to be not rejectable although this law predicts the 

physical impossible infinite rate at the start, while there always is a delay time with a 

negligible rate at the start of transport phenomena, and predicts a (physically impossi-

ble) unlimited increase with time, thus is, in principle, not able to fit total to any test-

result (see Appendix I for real, possible, precise data fits (with correlation 1) by de-

formation kinetics theory).  

 

In the following chapter, the untenable phenomenological models of transformations will 

be discussed and replaced by the exact theory of reaction kinetics, to make a real explana-

tion and prediction of time dependent behavior possible. This leads to a new theory of so-

lidification, nucleation, glass transition, annealing, diffusion, Rouse and Zimm and other 

spectra, power law, reaction order, etc., and leads to the demanded calculable reliability. 

 

2. General aspects of transformations  

2.1.  Introduction  

As discussed above, the description of the mechanical behavior of glasses like wood, still 

is based in literature, on extrapolations of not valid transformation models of soft and liq-

uid-like materials. It thus is necessary to discuss general possible behavior of materials in 

relation to wood using the exact theory. This exact theory is shown to explain all phenom-

ena and fits the data of tests, done on the same specimen, thus on the same structure, with a 
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correlation close to one (as is necessary for a molecular theory).  

For the discussion of the applied transformation models, a general discussion is necessary 

of phase transformations what are changes of the characteristics and physical properties of 

materials on alteration of the external constraints such as pressure and temperature due to 

changes of the microstructure. Such a transformation involves a considerable atomic rear-

rangement so that the required structural and compositional changes can occur. Homoge-

neous transformations show compositional changes and no structural changes. Wood-like 

polymers, on the contrary, can not show compositional changes at a transformation, but 

only structural changes in the side-bond structure (as will be discussed in 2.2). Thus, mod-

els based on typical homogeneous transformations behavior cannot be applied to wood.  

 

2.2. Heterogeneous transformations  

Heterogeneous transformations occur at interfaces and are initiated at microscopically 

small volumes of the product phase. This is known as nucleation. Nucleation may occur at 

quenched-in crystal defects or at foreign particles. The process of growth, following after 

nucleation, involves growth of the nuclei by thermal activated long-range or short-range 

diffusion and transfer processes at the interface, or may involve a martensitic transfor-

mation, showing no compositional change, but a small change of the configuration, caused 

by a high internal driving force. Typical heterogeneous transformations are:  

 liquid-solid transformations like crystallization and melting; 

 solid-solid transformations that may follow the common behavior of thermal activa-

tion, or may occur by activation due to a very high internal stress as martensitic trans-

formation.  

The martensitic transformation will not be discussed because it does not occur in wood and 

wood-products. There even is no indication of such a transformation at the lowest tempera-

tures (where the side bonds are strong and don’t flow). Even when a martensitic configura-

tion may exist in wood, the elementary crystalline fibrils in wood of 3 nm are too small to 

make martensitic nucleation possible because this is below the critical dimension to make 

it possible to build up high enough internal stresses for this transformation.  

The common thermal activated transformations, at lower stresses, are distinguished into 

processes showing a short-range transport, like the polymorphic transformation, the mas-

sive transformation, order-disorder reaction, and recrystallization, and into processes 

showing a long or medium range transport like the eutectoid reaction, cellular reaction, 

precipitation and coarsening.  

The transformations with a short-range transport of atoms do not show major composition-

al changes. The polymorphic transformations, (from one equilibrium structure to the oth-

er), in metals and ceramics, only show the nucleation and growth of a new lattice into the 

product phase. Also, the massive transformation only shows a change of the crystal struc-

ture and no change of composition. The same applies for the order-disorder reaction, show-

ing the nucleation and growth of the ordered phase in the disordered phase, and for recrys-

tallization involving the creation of a strain free lattice at the expense of its, e.g. by cold 

work, strained lattice (or for wood, involving the re-extension of crystallites).  

Because the (infinite) long wood-polymers only may show structural changes by secondary 

side bond breaking, transformations by long-range transport of atoms are not possible. 

Transformations of wood thus only may show a comparable behavior in some aspects with 

the transformations showing a short-range transport, like the massive transformation or 

recrystallization, with the exclusion again of the short-range transformations needing a free 

transport of atoms like e.g. the order-disorder reaction.  

Because all transformations are diffusive, diffusion, as general common behavior, should 

be discussed first.  
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2.3.  Derivation of the right diffusion equations for the different cases  

Polymers like wood may show diffusion of whole sections of chains and not of molecules 

because there is no covalent bond breaking and bond formation that provides chain break-

ing and chain extension. Diffusion in solids the best can be discussed by the simple exam-

ple of diffusion of interstitial atoms in metals where no doubt is possible about the mecha-

nism. The interstitial atoms jump from one interstitial position to a neighbouring one. Con-

sider a set of parallel atomic planes of interplanar distance λ, having a concentration gradi-

ent of diffusing particles along the x-axis perpendicular to the atomic planes. The probabil-

ity of an interstitial atom to jump in any direction per second is denoted here by p. Because 

the concentration of interstitials is small, p can be considered independent of the concen-

tration. The probability for a jump in forward direction will be denoted by fp and the num-

ber of diffusing particles per unit area, on the plane located at x, by n(x). By expansion at 

time t:  

n(x + ) = n(x) + (∂n/∂x) + 0.5(∂
 2

 n/∂x
2 
)λ

 2
 + ……

  
 



 

n(x -  ) = n(x) -  (∂n/∂x) + 0.5(∂
2
n/∂x

2 
)λ

2
  - …….                                     (2.3.1) 

At instant t + t, where t << 1/p, the increase n of the number of particles on the plane at 

x is, for a one-dimensional flow, equal to the number of particles jumping from (x + ) into 

x, minus the number of particles jumping away from plane x. Thus, using eq.(2.3.1):  

n(x) = (n(x + λ) – n(x)) = fpt(n(x + λ) – n(x))  fpt(n/x)λ, or:  

n/t = Dn/x                                                                                                            (2.3.2) 

This is Fick’s first law, representing a forward reaction only. The equation only is able to 

describe a part of the process that is far out of equilibrium. More general is the reaction in 

forward and backward direction that also may contain the equilibrium state. Then 



n is 

given by the number of particles jumping from (x - λ) into x, plus the number of particles 

jumping from (x + λ) into x, minus the number of particles jumping away from plane x. 

Thus according to eq.(2.3.1):  

n(x) =  (n(x + λ) + n(x - λ) - 2n(x)) =  fpt( 
2
n/ x

2
)λ

2
, or: 

∂n/∂t = fpλ
2
(∂

2
n/∂x

2
) = D(∂

2
n/∂ x

2
)  (2.3.3)  

what is Fick’s second law. In eq.(2.3.3), f is determined by the geometry of the lattice. For 

instance, in the b.c.c. lattice of iron it is possible from 2/3 of the interstitial positions to 

jump in forward or in backward direction and from the positions in which this is possible, 

one of the four possible directions is a forward or a backward jump. Thus:  

 f  = (2/3)(1/4) = 1/6 and in that case:   D =(λ
2
/6)p.  

The jump probability p is determined by the probability of a particle to have a sufficient 

high thermal energy to overcome the resistance from the other atoms when moving from 

one interstitial position to the other, thus when moving from one minimum potential ener-

gy position to the other against an intermediate energy barrier. Thus the probability p of 

having the energy Gꞌ at T degree Kelvin is:  

p = exp(- Gꞌ/kT),  

in which 



 is the frequency of vibration or the number of attempts to cross the barrier per 

second and Gꞌ is the activation energy or the height of the potential energy barrier and kT 

is the mean vibrational energy of the particles. Thus:  

D = (
2
/6)exp(- Gꞌ/kT) = (

2
/6)exp(- Hꞌ/kT  + Sꞌ/k)                                   (2.3.4)  

where Sꞌ in Gꞌ = Hꞌ – TSꞌ is the entropy difference between the interstitial position and the 

activated state halfway between two interstitial positions at the top of the barrier and Hꞌ is 

the activation enthalpy for these atomic jumps.  

Eq.(2.3.3) is used to describe diffusion e.g. of water in wood, ([2], pg. 102). The equation 

is based on a small (only one term of the expansion) chemical potential gradient and a neg-

ligible driving force (random walk of the jumping elements). For the general case, the dif-
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ferences in forward and backward reactions due to any possible driving force should be 

regarded. Then eq.(2.3.3)  becomes:  

n(x) = (n(x +) + n(x - ) – 2n(x)) = ft[(pf – pb)n/x + (pf + pb)
2
(

2
n/x

2
)/2]  

or: n/t = fexp(- H’/kT  + Sꞌ/k)[(exp(E’/kT)  - exp(- E’/kT))n/x  +  

+ (exp(Eꞌ/kT) + exp(-ΔEꞌ/kT))
2


2
n/x

2
/2]  

or: n/t = fexp(- H’/kT  + S’/k)[2sinh(E’/kT) n/x +   

+ cosh(Eꞌ/kT)
2


2
n/x

2
]                                                                                         (2.3.5)  

For high driving forces this is: 

n/t = fexp(- Hꞌ/kT + S’/k)[exp(Eꞌ/kT) n/x +  exp(Eꞌ/kT)
2


2
n/x

2
/2]  

or: n/t  fexp(- H’/kT + Sꞌ/k)exp(Eꞌ/kT) n/x                                  (2.3.6) 

And for low driving forces, e.g. in Newtonian like liquids, eq.(2.3.5) becomes:  

n/t = fexp(- Hꞌ/kT  + Sꞌ/k)[2(Eꞌ/kT) n/x +  
2


2
n/x

2
 ]          (2.3.7) 

            fexp(- Hꞌ/kT  + Sꞌ/k)[2(E’/kT) n/L +  n
2
/L

2
]  

            n(2f/hL)exp(- Hꞌ/kT  + Sꞌ/k)Eꞌ                                                         (2.3.8) 

when the gradient:  /L <<  2Eꞌ/kT  as can be the case at transformations, showing a jump 

of the activation energy of 2Eꞌ outside the transition temperature.  

When Eꞌ  0, near equilibrium, eq.(2.3.7) becomes:  

n/t = fexp(- Hꞌ/kT  +  Sꞌ/k)(
2


2
n/x

2
),  

showing the right value of D of eq.(2.3.3) of:  D = fnλ
2
exp(- Hꞌ/kT + Sꞌ/k).  

It is seen that eq.(2.3.3) only applies when processes are possible at near zero driving forc-

es, when there is a concentration gradient and no transformation.  

The reaction, in a heterogeneous system, can be interface controlled, what means that the 

process is governed by molecular diffusion at the interface. When, at the other hand, in a 

heterogeneous system, the reaction at an interface is very fast, diffusion through the mate-

rial towards that interface is slower and is determining. Then the activation energy for the 

process at the interface shows a value equal to the activation energy for the determining 

diffusion through the material.  

At the interface the gradient ∂n/∂x of e.g. eq.(2.3.2) is due to the reduction of n to zero 

within a thin layer L, adjacent to the interface giving ∂n/∂x = n/L and eq.(2.3.2) gets the 

form of the mono-molecular forwards reaction:  

∂n/∂t = Cn                                                                                                                (2.3.9)  

with C = D/L. The same follows from eq.(2.3.3) with C = D/L
2
, if a curved gradient is as-

sumed to exist, that can be approximated by a parabola, as is possible in any thin layer:  

  



n x  = n x
2
/2L

2
   or   ∂

2

  



n x/∂x
2
 = n/L

2
.  

However the diffusion equation applies for small gradients and the lower order term 


2
∂

2

  



n x/∂x
2
 disappears in a thin layer (λ << 1) and eq.(2.3.5) will become:  

n/t = fexp(- Hꞌ/kT  + Sꞌ/k)2sinh(Eꞌ/kT) n/x =    

           = (2f/L)nexp(- Hꞌ/kT  + Sꞌ/k)sinh(E’/kT)  =    

           = nexp(- Hꞌ/kT  + Sꞌꞌ/k)sinh(Eꞌ/kT)  =    

Thus: n/t = Cꞌnsinh(Eꞌ/kT),                                                                           (2.3.10)    

identical to the general reaction equation of equilibrium theory. The overall behavior al-

ways can be given in the form of eq.(2.3.10) of a first order reaction depending on the local 

concentration near the interfaces. This concentration follows from measuring the reaction 

rate. Processes in wood and structural materials thus follow the elementary reaction equa-

tion what is further discussed below in 2.4.  

 

2.4.  Transformation kinetics  

2.4.1. General aspects of reaction kinetics and reaction order 
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Mostly a reaction equation is given in the beginning and end states of the reacting materi-

als thus as a sum of the amounts of reactants turning to the sum of amounts of products. In 

such a reaction equation the reaction order is not known but regarding this equation as if it 

is a true equation in molecules, an empirical reaction order is obtained. For instance the 

rate of the turnout of the product P by the reaction of the reactants A and B is:  

dP/dt  =  k  



A
n
B

m
                                                                                                       (2.4.1.1)  

where n and m are empirical values. When this equation does not give the molecular reali-

ty of n molecules A and m molecules B, it should not be used because it will not apply in 

all circumstances. The reaction equation thus should be given at the molecular level where 

n and m are numbers of reacting molecules. At the molecular level, there always are many 

successive elementary reaction-steps with intermediary products and the reaction equation 

of this mechanism should be given in the determining elementary step with the slowest 

rate. In a thin gas, molecules will collide with each other and thrown back like elastic balls 

and some of them will have higher speeds by the collisions than others and are energized 

and as such even may get such a high speed that they are called to be activated giving a 

reaction at the collision by a change of the electron structure and kernel rearrangement. 

Because 2 molecules are involved in the collision the reaction can be expected to be of the 

second order or bimolecular. For instance: 

A + A    



k
   P     or:     dP/dt = kA

2
                                                                    (2.4.1.2) 

It is not very probable that in a thin gas, 3 molecules will collide at the same time, in the 

right directions and reaction orders of 3 and more are not very probable. The order 3 is 

more probable in a liquid as a result of two successive bimolecular reactions within a very 

short time. Mostly however first order reactions occur at higher concentrations as will be 

shown below. The occurrence of first order reactions is evident for elementary reaction 

steps of decomposition and of isomerization having the form of:  

A   



k
   B + C     respectively: A    



k
   Aꞌ     giving both:     dA/dt  =  kA  

In general, the order follows from the mechanism of a collision equilibrium:  

A + A 
  




1k


2k
 A + A*    followed by the chemical reaction:   A*    



3k
    P  

where A* is an activated molecule. Now both reactions will have the rate of the slowest 

determining step. Thus the rate of the shift of the equilibrium dA*/dt is equal to the rate of 

the product formation dP/dt or:  

k1A
2
 – k2AA* = k3A*   or:  

A* =  
  



k1A
2

k3  k2A
   and dP/dt = k3A* =  

  



k3k1A
2

k3  k2A
                                                 (2.4.1.3)  

For small concentrations A in dilute solutions or gasses, k2A << k3 and the rate:  

dP/dt = k1A
2
  follows the second order reaction.  

At higher concentrations A, as is the case in solids, k2A >> k3 and the reaction rate: 

 dP/dt  = (k3k1/k2)A                                                                                                (2.4.1.4)  

shows a first order reaction.  

For solids, because of the high density, also for relative small concentrations a first order 

reaction equation always occurs as can be seen from the following mechanism. 

A + A 
  




1k


2k
 A + A*    due to the exchange of vibrational energy, 

A + N 
  




4k


5k
 N + A*   due to the exchange of energy with not reacting mole- 
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                                            cules N, that are not able to jump, and: 

A*   



3k
    P   

In total there is no accumulation of the intermediate product A* and:  

dA*/dt  = 0 = k1A
2
 – k2AA* +  k4AN – k5NA* -  k3A*     or: 

A* =  
  



k1A
2
 k 4AN

k3  k2A  k 5N
                                                                                                (2.4.1.5) 

and for smaller values of A and always high values of N is: A*  (k4/k5)A  and:  

dP/dt  = k3A*   (k3k4/k5)A                                                                                  (2.4.1.6)  

and there is a first order rate equation for solids similar to eq.(2.4.1.4). And also when k3 is 

not much smaller than k5N, there is a first order reaction.  

When k3 is much higher than k5N, is:  

dP/dt  = k3A*   k4AN                                                                                           (2.4.1.7)  

also a first order reaction in A, because N can be regarded to be constant. Mostly diffusion, 

eq.(2.4.1.7) is determining and not the chemical reaction at the interface, eq.(2.4.1.6).  

Because of the applied constant boundary conditions, transformations occur at a constant 

rate. This steady state also occurs when the number of sites for the reaction is constant as 

for instance for the reaction of gases at the boundary of a glowing wire. Determining for 

diffusion in solids is the number of free spaces, where molecules may jump in. This num-

ber of holes like lattice defects, dislocations, etc., can be constant following from the min-

imum energy of formation of these holes. This constant number of holes A0 will be divided 

among A and A* in the last mechanism and eq.(2.4.1.5) becomes with A0 =  A  + A* or  A 

= A0 – A* : 

  



A*
k1A

2
 k4AN

k3  k2A  k 5N
  

  



k4N(A0 A*)

k3  k 5N
   or:   

  



A*
k 4NA 0

k4N  k 5N  k3

                    (2.4.1.8)  

giving a rate of:  

dP/dt = k3A*  [k3k4/(k5 + k4)]A0    or:   dP/dt   k4NA0 , similar to eq.(2.4.1.6)      

and eq.(2.4.1.7), however, showing zero order reactions.  

The first order reactions thus may reach a steady state, explaining the quasi zero order re-

actions of transformations. At the end of the reaction, near equilibrium, when A0 is not 

limiting any more, the reaction again becomes of the first order.  

For liquids, the behavior is a bit more complicated. The molecules do not move free, as in 

a thin gas, but interact with their neighbours and collide many times against their neigh-

bours (about 150 times at 293 K) before diffusing away to the next spot where the same 

will be repeated. If the activation energy is low, a few collisions will lead to a reaction and 

the speed of the reaction is determined by the speed of diffusion. When the activation en-

ergy is high, diffusion is not limiting any more for the speed of product formation and the 

speed of the reaction is lower and thus determining. The mechanism is:  

A + B 
  




dk


dk

 [AB]   



1k
   P   

Again the speed of the shift of the equilibrium is equal to the speed of the product for-

mation or:  

v = kdAB – k-d[AB] = k1[AB]   or:  [AB] = 
  



kdAB

k1  k d

   and    v = dP/dt = k1[AB]   or:  

v = 
  



k1kd AB

k1  k d

                                                                                                               (2.4.1.9) 

leading to a second order reaction.   
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When k1 >> k-d, diffusion is determining or:  

v = kdAB                                                                                                               (2.4.1.10)  

and when k  << k-d, the chemical reaction is determining or:  

v = (k1kd/k-d)AB     ( k1AB)                                                                               (2.4.1.11)  

Mostly diffusion is determining and eq.(2.4.1.10) will apply. However, wood is not a liq-

uid with free moving molecules that may show a second order reaction and a mechanism 

with an intermediate product (given above by [A,B]). Transformation models of wood thus 

should not be based, as done, on extrapolation of models of dilute liquid solutions and thin 

gasses with higher order reactions because the behavior then cannot be made consistent.  

As mentioned before, transformations are analyzed by using the empirical equation, 

eq.(2.4.1.1). This equation can be written in general:  

a b c
1 dA n n n. kA B C
a dt

                                                                                            (2.4.1.12)  

With the ratio of the initial concentrations: A0 : B0 : C0 = a : b : c,  and with a conversion of 

X, is: A = A0 – X; B = (A0 – X)(b/a);  and C = (A0 – X)(c/a),  and substitution of these val-

ues in eq.(2.4.1.12) gives:   

-- a b c t
0 0 0 0

1 dA b cn n n n. k(A X) .( (A X)) .( (A X)) k '(A X)
a dt a a

      ,     

where nt = na + nb + nc. Thus in general applies:   

-- 
  



dA

dt
 k''A

n
                                                                                                         (2.4.1.13)  

The solution of this equation is for n = 1:       
  



ln(
A0

A
)  k''t              

and for n  1:  

0

1 11 nk '' t .((1 y) 1).
n 1n 1 A

  


   

With: A = A0(1 – y), with y = fractional conversion, the solution is at a certain value of y:  

  



k'' t y 
1

n  1
.((1 y)

1n
 1).

1

A0
n1

                                                                   (2.4.1.14)  

or: y 0log(t ) log(f (n,k '',y)) (n 1) log(A )                                                          (2.4.1.15) 

making it possible to determine the order “n” of the “reaction” at regarding a constant val-

ue of y, doing tests with mutual different values of A0. However, as will be shown later, 

this experimental value of n =   



na  n b  n c  1 applies for all processes in wood. This 

lowest overall order n = 1, shows that there is one speed determining step and that there are 

no mechanisms with intermediate products.  Further, the slightly lower value of the order 

than one, at higher concentrations, indicates that series reactions are acting (and not con-

current reactions).  

Based on these results it is possible and convenient to obtain general solutions of the often 

complex reactions of the transformations by a sinus series expansion of the potential ener-

gy surface (as is discussed in [2]). Based on the symmetry conditions of the orthogonal 

components there is a not changing, thus steady state, intermediate concentration in the 

successive steps causing a behavior like one elementary symmetrical reaction for each 

component [2].  

 

2.4.2. Kinetics of phase transformations  
 
A number of phases may be involved in a transformation and may interact in many ways. 
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Typical transformations are given by the following overall phase changes, written in sym-

bols of the phases:  

 



  ꞌ +                                                                                                             (2.4.2.1)  

where the matrix α and the product phase αꞌ have the same structure but different composi-

tions. While the β phase nucleates and grows, solutes drain out of the matrix until α be-

comes αꞌ;   

 



  ,                                                                                                                   (2.4.2.2)  

that may represent a change of the bond structure;   

 



   +                                                                                                               (2.4.2.3)  

where the product consist of two phases which nucleate and grow as a composite.  

On quenching an alloy the precipitation reaction eq.(2.4.2.1) may occur. During this trans-

formation, considerable movement of atoms must take place so that a new lattice is created 

in place of the old one and the solute is redistributed in order to create the composition dif-

ference between the phases.  

Eq.(2.4.2.2) may represent a polymorphic transition, showing no compositional changes. 

Atomic movements are still required for the creation of the new lattice.  

Eq.(2.4.2.3) may represent an eutectoid transformation. This reaction requires diffusion 

and partitioning of elements and may show several processes at the same time with compa-

rable activation energies. Considerable atomic movements are required to achieve the dif-

ferences in structure and changes in composition.  

As discussed  before, only the first order reaction according to the type of transformation 

similar to eq.(2.4.2.2) is possible for wood polymers and need to be discussed. In general 

may apply in this case, for different probabilities of jumps in forwards and backwards di-

rections, the first order reaction equation:  

  



N / t CfN f CbNb  =  (kT/h)[Nfexp(- Ef/kT) - Nbexp(- Eb/kT)] =     

              = 
  



2kT

h
. N f .N b 

  



exp 
Ef  Eb

2kT









sinh

  



Eb Ef  kT. ln(N f / N b )

2kT









           (2.4.2.4)   



N/



 t = 0 at equilibrium. Thus sinh(x) = 0  or  x = 0. Thus at equilibrium is:  

  



N fe / Nbe   =  exp((Ef – Eb)/kT)         (2.4.2.5)  

and eq.(2.4.2.4) can be written:  

  



N

t


kT

h
. N fe

.N be
.exp 

Ef Eb

2kT









.

N f

N fe


N b

N be









                          (2.4.2.6)  

In the classical “steady-state” model for nucleation, grow of the embryo follows from suc-

cessive reactions and thus from the addition of a large number of equations, eq.(2.4.2.6), 

and only the first and last value of N remain, giving   



N f  N fe  and   



N b  =  0. According to 

the classical model,   



N b  = 0 at the critical size of the embryos because then they are not in 

equilibrium and spontaneously grow into the stable product phase. For   



N b  = 0, eq.(2.4.2.6) 

turns to eq.(2.4.2.7). This however only is possible for high values of the driving force. 

Then x is high in sinh(x) and thus: sinh(x)  exp(x)/2 and eq.(2.4.2.4) becomes:  

N/t  (kT/h)  



N f exp(- Ef /kT)                                                                            (2.4.2.7)  

showing only a forward reaction (  



N b  = 0). An implication of the classical steady-state 

model of nucleation, eq.(2.4.2.7) thus is, that there are high driving forces and the classical 

model thus can not apply in general also for low driving forces or for behavior near equi-

librium. 

The same applies for the classical “equilibrium model” of nucleation. According to this 

model embryos are formed as a result of a large number of bimolecular reactions: 
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 O1 + O1 






 O2  

 O2 + O1 






 O3  

              ……….. 

 On = 1  + O1 






 On  

            ___________________ 

                       nO1 






 On  

             

giving for equilibrium: exp((Eb – Ef)/kT)  = (Nn/Nt)/(N1/Nt)
n
  (Nn/Nt)  Nn/N1, 

because: Nt = N1 + ∑Nn  N1 and thus: (N1/Nt)
n
  1

n
  1.    

Thus whatever the reaction order is (2
nd

 order partial, or nth order total), the reaction be-

haves like a first order reaction with a low concentration of the product, the embryo, 

 Nn << N1, and thus with: (Ef – Eb) >>  kT. Thus, also the classical equilibrium model of 

nucleation implies high driving forces and high activation energies at nucleation in order to 

explain the occurring first order reaction.  

For a general description, the nucleation mechanism should show growth of the grains by 

diffusion at the grain boundaries and thus also should follow the diffusion requirements (in 

stead of the questionable condition Nb = 0 of the classical model). At diffusion the same 

sites are involved in forwards and backwards jumps, thus: Nb = Nf  = Nt  and eq.(2.4.2.4)  

becomes: 

  



dN

dt


2kT

h
.N t

.exp 
Ef Eb

2kT









.sinh

Eb Ef

2kT









                                              (2.4.2.8)  

In this equation is: Ef = Efꞌ - Vf and  Eb = Ebꞌ + Vb,  where   is the local stress on the 

sites and Vf and Vb are the activation volumes.  

For an isotropic material, or an orthotropic material like wood in the main directions, there 

is no difference in positive and negative flow and positive or negative shear-strength etc. 

and: f f b bV V V     .   

Also for an anisotropic material, expansion of the activation energy surface may be sym-

metrical with respect to the activation work term 



V, [2], and no distinction is possible 

whether a non-symmetrical process, eq.(2.4.2.8), is acting or different symmetrical pro-

cesses are active. Eq.(2.4.2.8)  thus becomes for each process:  

  



dN

dt


2kT

h
.N t

.exp 
Ef ' Eb '

2kT









.sinh

Eb 'Ef ' 2V

2kT









                                           (2.4.2.9)  

This rate is zero when sinh(x) = 0, thus when x = 0. Thus: 2 σ0V = Efꞌ – Ebꞌ and  the sinh-

term in eq.(2.4.2.9) becomes: sinh[((σ – σ0)V)/kT]. Thus, the process  starts when the 

stress  is above σ0. For a stress below σ0, the equilibrium concentration according to 

eq.(2.4.2.5) applies and dN/dt = 0.  

For phase transformations, there is a chemical potential and the corresponding σ0, as driv-

ing force, is positive and the sinh-term in eq.(2.4.2.9) is, when no external stress σ is ap-

plied and the internal stress, as usual, is negligible:  

sinh[((0 + )V)/(kT)]  sinh[(0V)/(kT)].  

A phase transformation of a single component system cannot be caused by a com-

positional gradient and only the strain-energy gradient by an applied external stress deter-

mines the flux. Then Efꞌ = Ebꞌ = Eꞌ  and eq.(2.4.2.9) becomes: 
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

dN

dt


2kT

h
.N t

.exp 
E'

kT









.sinh

V

kT









                                                              (2.4.2.10)  

as applies for creep of materials by self-diffusion [2].  

When there are structural changes, Nt in eq.(2.4.2.10) is not constant and as discussed in 

[2] at 3.5, the concentration term in the equation is more general:  

Na2A/1   

where 2 is the jump distance of the activated unit; A, the cross-section of that unit; 1 the 

distance between the activated sites, and Na, the number of these sites per unit area. Then 

Na/1 = Nt  is the number of activated elements per unit volume. The activation volume is: 

Va = 2A, and the work by the local stress f on the unit is: fVa/2  = fA.  

The equivalent work by the part , of the total mean technical macro stress t, that acts at 

the site is  times the unit area thus is:  

11 = NafA   or:  fA =  /Na =  V,  

where V = /Na is used in eq.(2.4.2.9) and eq.(2.4.2.10).  

With C = (2kT/h)exp(-  E’/kT),  eq.(2.4.2.10) is general, also for structural changes:  

d(Na2A/1)/dt =  C(Na2A/1)sinh(/NakT)                                            (2.4.2.11)  

If the structure A is constant, eq.(2.4.2.11) is analogous to eq.(2.4.2.10):   

dNt/dt  =  CNtsinh(/NakT)   

and when the maximal concentration of sites is reached: Nt =  Ntm (or Na is constant and 1 

is minimal) this equation becomes (as eq.2.4.1.8):  

dNt/dt  = CNtmsinh(/NakT),  

showing a constant rate. In eq.(2.4.2.11), A and 1/1  are mathematically the same in the 

equation and A can be taken to be constant, as is mostly the case, and when not, any 

change of A can be accounted by an equivalent change of 1/1  and eq.(2.4.2.11)  becomes:  

d(Na/1)/dt = C(Na/1)sinh(/NakT)      or:  

dln(Na)/dt + dln()/dt + dln(1/1)/dt  = Csinh(/NakT)                         (2.4.2.12)  

It appears that each parameter, or each term at the left side of the equation, may dominate 

at different time ranges. Writing this equation like:  

dln(Na)/dt + dln()/dt - Csinh(/NakT) = - dln(1/1)/dt,                              

it is seen that the right and left side of the equation have different variables and there 

should be a separation constant C1. This constant however will be small because 

d(ln(1/1))/dt = C1 can be about zero in some time range (e.g. at the delay time). Thus the 

change of 1/1 will be due to a separate process and need not to occur in combination with 

the change of the other 2 variables in the same equation and eq.(2.4.2.12) thus splits into 

two equations eq.(2.4.2.13) and (2.4.2.14):  

d(ln(1/1))/dt = dln(Naꞌ/1)/dt =  Cꞌsinh(ꞌꞌ/NaꞌkT)                                (2.4.2.13)  

and: dln(Na)/dt + dln()/dt = Csinh(/NakT)                                             (2.4.2.14)   

with constant ꞌ and Naꞌ in eq.(2.4.2.13).  

Eq.(2.4.2.14) applies when the left hand side of the equal sign is positive, as is the term at 

the right hand side. When the left hand side is negative, a minus sign should be used before 

the term at the right hand side. This means that absolute values of the variables should be 

used. Eq.(2.4.2.14)  also can be written:  

- dln(1/Na)/dt  + dln/dt = Csinh(/NakT)    or:    

dln(/|Na|)/dt + dln||/dt = Csinh(/NakT)   or:  

 |dln(/Na)/dt| = Csinh(/NakT) = |- dln(Na/)/dt|                              (2.4.2.15)  
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and it is seen that mathematically Na and 1/ are the same variables and often one can be 

regarded to be constant while any change can be accounted by a compensated change of 

the other parameter.  

d(Naꞌ/1)/dt  and d(Na/)/dt             of eq.(2.4.2.13) and (2.4.2.15) are relative increases of 

the number of sites and may replace the concentration rate dN/dt of eq.(2.4.2.10).  

A further simplification of eq.(2.4.2.10) can be made for high values of Eꞌ >>  kT. Then the 

temperature dependent term kT/h can be replaced by a constant one and can be written as: 

(kTd/h)(T/T d), where Td is the Debye temperature or some other mean temperature and: 

kTd/h  is the Debye frequency d, or some other mean frequency , T/Td  can be written as:  

T/Td = exp(- ln(Td/T)) = exp(- ln(1 + (Td – T)/T)   exp(- (Td – T)/T)  and because:  

Eꞌ = Hꞌ – SꞌT, the term exp(- Eꞌ/kT)  becomes: 

 
  



T

Td

.exp 
E'

kT









 exp 

H'kTd  S'T  kT

kT









 exp 

H''S''T

kT









 

and because kTd << Hꞌ and k << Sꞌ, the enthalpy Hꞌ and entropy Sꞌ need hardly be corrected 

when kT/h is replaced by υd or by a chosen mean value υ. Eq.(2.4.2.10) thus becomes:  

t

a

dN E '. .2 N exp sinh
dt kT kTN

  
     

   
                                                               (2.4.2.16)  

For the usually described transformations, the driving forces  (which should be obtained 

empirically, as the other variables) are mostly very low near the equilibrium temperature. 

For instance for grain growth this is two orders lower than that for precipitate coarsening 

or that of recrystallization by cold working or of polymorphic transformations (per one 
0
C) 

or of solidification or melting (per degree C) and this group of driving forces is again 3 

orders lower than that for diffusion in solid solutions (being 0.7.RT = 1.4 kcal/mol for di-

lute solutions at 1000 K) what again can be one order lower than the driving force for some 

chemical reactions like the formation of inter-metallic compounds or 2 orders lower than 

that of a chemical reaction like e.g. oxidation. At the low transformation stresses (and driv-

ing forces), the behavior may become quasi Newtonian because: sinh()   and the 

rate is about linear dependent on the driving force or stress . In general, Newtonian be-

havior only is possible for small spherical molecules (see appendix I). Then, and because 

of a high concentration of vacancies at the temperatures near “melting”, this concentration 

is not any longer proportional to the initial stress as in the non-linear case. Further, not on-

ly the stress, but also the activation volume is small at the occurring vacancy mechanism.  

For low values of the driving force: Eb - Ef  <<  2kT, eq.(2.4.2.8) becomes:  

  



dN

dt


Eb Ef

h
.N t

.exp 
Ef Eb

2kT











2E

h
.N t

.exp 
E'

kT









                                      (2.4.2.17)  

with Eb = Eꞌ + E  and Ef = Eꞌ - E, or becomes analogous to eq.(2.4.2.10):  

  



dN

dt


2VN t

h
.exp 

E'

kT











2

h1

.exp 
E'

kT









                                                        (2.4.2.18)   

because V = /Na and Nt  per unit volume is comparable with Na per unit area divided 

by the distance 1 or: Nt = Na/1  (see [2] or above).  

The last 2 equations thus only may apply (at measurable rates) for some (melting) crystal-

line materials (of round molecules) and not for the (infinite) long molecules in wood.  

The rate dN/dt of eq.(2.4.2.18)  is constant at constant stress and temperature, showing that 

1  is constant and also  is constant or can be taken to be constant because any variation in 

 cannot be distinguished from the variation of 1/N in the equation. Eq.(2.4.2.13) thus may 
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apply for high loading.   

The chemical force may act in the same way as an applied stress:  

(Ebꞌ – Efꞌ)Nt = Eꞌ Nt/Na = Eꞌ/1 = 2cNt /Na = 2c/1,  

and also eq.(2.4.2.17) has a constant rate. The chemical force is due to e.g. differences in 

the crystal structure and composition of the parent and product phases. The influence of the 

stress, due to the elastic strain energy by the accommodation of the differences in the spe-

cific volumes of the parent and product phases and the mismatches at the interfaces, mostly 

is small in the tests and  of eq.(2.4.2.18):  

 = e + c  c, nearly is caused by the chemical force c alone.  

For higher values of the driving force: Eb – Ef  >> 2kT, eq.(2.4.8) and eq.(2.4.2.10) are:  

  



dN

dt
 N.exp 

E'

kT









.exp

E

kT









                                                                            (2.4.2.19)   

with: E = Eꞌ/N = c/N.  

 

2.5.  Empirical relations   

The empirical classical nucleation model will discussed in a next chapter. Wood polymers 

do not show spherulites or folded molecules and thus will not show nucleation as a barrier 

to growth or decomposition. However, it plays a role in transformations related side bond 

breaking, thus to moisture content change and e.g. at (re-)crystallization of crystallites and 

the discussion of nucleation and a derivation of a new right theory is necessary, not only 

for nucleating polymers, but also because in a RILEM-proposal and EC-reports, the wrong 

and impossible classical nucleation equation of solidification (needing infinite energy to 

obtain equilibrium) is regarded to be the basic equation for all transformations and even for 

all time dependent behavior (like creep). The derivation of the right theory thus is im-

portant, also to show that nucleation is just a common example of a structural change pro-

cess, thus following the kinetic theory of all transport processes.  

The discussion of the classical model of nucleation and the derivation of new exact theory 

as correction, is given in B(2011) and in Section B.4: “A new theory of nucleation”.  

 

2.5.1.  Parameter estimation and explanation of the empirical relations  

All phase transformations need transport of atoms or molecules through the material by 

diffusion what is determining for the rate of the process. In principle, the molecules jump 

from free space to the adjacent free space in the direction of the surface of the new phase. 

What means that the free spaces move in the opposite direction. The study, in general, of 

the possible movements of these free spaces, as vacancies and dislocations (and segments 

of wood), will give the information on the kinetics of transformations and especially on the 

possible forms of the activation volume parameter.  

The diffusion flux is caused by the chemical potential gradient due to the composition gra-

dient or may be due to a strain-energy gradient. Because of the similar effect and the pos-

sible interaction with stress, the negative gradient of the chemical potential may be regard-

ed as a chemical force on the molecules that can be aided or opposed by the internal and 

applied stresses. For a single-component system, there is no compositional gradient and the 

net flux is entirely due to the stresses. Because of the necessary movement of spaces, the 

mechanisms are the same for phase transformation as melting and for flow by stress, and 

for stress-rupture and for creep and self-diffusion, as follows from the same activation en-

thalpy and entropy of all these processes. The easy obtained data of self-diffusion (like 

creep) thus may give information on the mechanism of the solid-liquid phase transfor-

mation. The displacements of the free spaces can be measured indirectly, by measuring 



 16 

creep or relaxation, but often also can be measured directly by measuring the jump of the 

spaces due to a stress pulse [1]. The following empirical equations, applying mostly only 

in a limited range of stresses, are used to describe the mobility of the free spaces as dislo-

cations etc.:   

The power law equation:  

  



v  v0.


0











n

          (2.5.3.1)  

and the nucleation equation, based on the classical nucleation model (see 2.5.1):  

  



v  C1.exp 
D











    (2.5.3.2)  

where v is the free space velocity and  is the applied stress. The exact theoretical transport 

kinetics equation can be given in the form:  

v = 2C2sinh()  C2exp()            (2.5.3.3)  

for high stresses.  

In the following fig. 2.5.4, measurements are given that follow these equations. Fig. c fol-

lows the exact eq.(2.5.3.3) and cannot be represented by the other 2 equations. Fig. b fol-

lows eq.(2.5.3.2) only and fig. a follows the power law eq.(2.5.3.1).  

To explain and compare these empirical equations, the following derivation is made.  

 

2.5.2. Derivation of the power law.  

Any function f(x) always can be written in a reduced variable x/x0   

f(x) = f1(x/x0)    

and can be given in the power of a function:  

f(x) = f1(x/x0) = [{f1(x/x0)}
1/n

]
n
   and expanded into the row:  

f(x)  = f(x0) + 
  



x x0

1!
.f'(x0 )

(x x0 )
2

2!
.f''(x0 ) .......  

giving:  

   
n n

1/ n 1/ n 10
1 1 1

0 0

x x 1 x. .f (x) f (1) f (1) f '(1) ..... f (1)
x n x

   
      
   

      

when: (f1(1))
1/n

 = (f1(1))
1/n-1

f1’(1)/n                or: n = f1’(1)/f1(1)  

where: f1’(1) = [f1(x/x0)/(x/x0)]  for x = x0      and f1(1) = f(x0)  

Thus:  

  



f(x)  f(x0 ).
x

x0











n

     with   
  



n 
f1 '(1)

f1(1)


f'(x0 )

f(x0 )
            (2.5.3.4)  

It is seen from this derivation of the power law, eq.(2.5.3.4), using only the first 2 expand-

ed terms, that the equation only applies in a limited range of x around x0.  

Using this approach on eq.(2.5.3.2) gives:  

  



v  C1
.exp 

D











 v0

. 

0











D/ 0

           (2.5.3.5)   

 and using this approach on eq.(2.5.3.3) gives: 

  



v  C2
.exp(  )  v0

. 

0











 0

                                                                                    (2.5.3.6)  

Thus within a short range of stresses around 0 there is no difference in fits according to 

eq.(2.5.3.1), eq.(2.5.3.2) or eq.(2.5.3.3) by the use of the same power law.  
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 a. edge-dislocation velocity in Fe-Si               0  

measurements:   eq.(2.5.3.1)       

  c.  dislocation velocity in Ni 

                                    0 data  

                        eq.(2.5.3.3)  

 

 

 

 

 

 

 

b. screw dislocation velocity in LiF    0   data    

             eq.(2.5.3.2).  

 

 

 

Fig. 2.5.4. The stress dependence of dislocation velocity in metals [1]   

    

This can be seen in fig. 2.5.5 a, b and c,  at high stress, where, for the same tests on Ge, in 

a limited high stress range,  fitting is possible according to all 3 equations  eq.(2.5.3.1) to 

(2.5.3.3). The power n of eq.(2.5.3.1) can be found from the slope of the double log-plot:  

ln(v) =  ln(v0) + nln(/0)    (2.5.3.7)  

n = dln(v)/dln(/0) here, and, similarly according to eq.(2.5.3.5) to eq.(2.5.3.7):   

n = D/0 = 0 , and comparison is possible of the constants of the empirical equations with 

the exact parameter  of the exact equation.  
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When over a long range of stresses, eq.(2.5.3.2) applies and the semi log-plot of ln(v) 

against 1/ shows a constant slope - D, then the parameter of the exact equation  is ac-

cording to: 0 = D/0,  equal to   = D/
2

0. This parameter of the nucleation equation will 

be shown to be right for the nucleation mechanism of the liquid-solid transformation. The 

semi log-plot of the exact equation, eq.(2.5.3.3)  is with  = D/
2

0:  

 

 

a. dislocation velocity in Ge  

□ data; ――  theory: sinh- equation  

only partly linear (below 7 Mpa)  

according to eq.(2.5.3.1)  

 

          b. dislocation velocity in Ge 

               □ data;  ――  eq.(2.5.3.2) 

 

 

 

 c.  dislocation velocity     □ data;    ――  

 

eq.(2.5.3.3), linear at higher stresses.  

 

 

Fig. 2.5.5. Examples of stress dependency of the dislocation velocity of Ge [1].  

 

Ln(v) = ln(C2) +  =  ln(C2) + D/
2

0        (    ln(C2) + D/0 )                               (2.5.3.8)   

Because the dislocation mobility tests are done with stress pulses that are long enough to 

get steady state velocities the applied stress  is equal to the initial applied stress 0  and 

eq.(2.5.3.8) becomes equal to eq.(2.5.3.2) what thus is the equation of the collection of all 

different pulse tests with different τ0 and has no meaning for one duration test at constant 

τ0.  Eq.(2.5.3.8)  shows that for stress relaxation (for one duration test, thus not for stress 

pulse tests) there will be a straight-line ln(v)    plot and not a ln(v) - 1/ - plot, what is 

verified by experiments in a sufficient wide stress range. This means that the classical nu-

cleation model (of nucleation of mobile segments by overcoming of point defects) or mod-
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els like crystal matrix drag (two-dimensional kink-motion model), all according to 

eq.(2.5.3.2), are not right and should be rejected because of the evidence of the different 

behavior at self-diffusion in creep and stress-relaxation experiments that fully can be ex-

plained by the activation volume parameter  of the exact molecular transport kinetics the-

ory which is able to explain all aspects of time dependent behavior. In the same way as for 

the nucleation equation, that shows a special value of , the power law behavior, when it 

applies over a long range of stresses, represents a mechanism with a special property of the 

activation volume parameter . The constant slope n of the double log-plot of ln(v) against 

ln() of eq.(2.5.3.1), given in fig. 2.5.4 a, and 2.5.6 a, is equal to 0  and the experimental 

verification of the constancy of 0 is shown in figure 2.5.6 c. The mechanism with this 

property of  is found in many materials as in BCC, FCC and HPC metals and non-

metallic crystals and also in e.g. concrete and wood. It was shown in [2], that this property 

of the activation volume , causes the stress-time equivalence and because in wood also in 

this case the activation volume is independent of the temperature, the time-temperature 

equivalence also applies for this mechanism.  

With the special value of  = n/0, eq.(2.5.3.3)  becomes:  

ln(v) = ln(C2) +  = ln(C2) + n/0         (2.5.3.9)   

and the semi-log-plot of ln(v) against  (= 

0) now shows a slope of n/0 that is diffe-

rent for every pulse test value of  (= 0) 

in the plot, thus a curved line, given in 

fig. 2.5.6 b. It follows also from 

eq.(2.5.3.9) that: dln(v)/dln() = ln(v)/d 

= n/0. This is: 0n/0 = n for the pulse 

tests collection of the dislocation mobility 

tests, where each applied stress  is equal 

to the initial applied stress 0. Only in this 

case the constant value n of the slope of 

the double log-plot may exist in a wide 

range,  as measured (see fig.2.5.4 a). At 

the same time, for the stress-relaxation 

tests, (that is one test with one τ0) at high 

stresses, the straight semi log-plot: ln(v) - 

 - plot applies according to eq.(2.5.3.9), 

what thus is no contradiction but is fully 

explained here by the exact theory by the 

other type of loading.  

 

 

 

 

 

Fig. 2.5.6. b. dislocation velocity in Mo            □   data;  low stress sinh-equation  
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 c. activation volume of dislocation   

              movement in Mo;  ----sinh-equation  

        

a.  activation volume of dislocation movement in Mo:    T- data;   theory, eq,(2.5.3.1)           

  

Fig. 2.5.6. Dislocation movement in Mo [1].  

 

Fig.2.5.4. c. shows that also a mechanism exists with a constant value of  in eq.(2.5.3.3). 

This does not only apply for polycrystalline material like Ni, but also occurs in other mate-

rials and in wood, for instance in a species with a wavy grain, as is measured by Kingston 

and Clarck and applies generally for wood for a dominating mechano-sorptive effect.  

The empirical laws only apply for high stresses because at low stresses there is no measur-

able mobility of dislocations and other jumping element, etc.  

 

2.6.   Liquid-solid transformations  

As known, crystallization is the formation of crystalline solids from liquids. It occurs by 

nucleation of crystals and the growth of the nucleated particles. Because the theory is ex-

tended in B(2011), and in Section B.4, this former Section  2.6 is scratched at this place.  

 

2.7. Short range diffusion  

Because the (infinite) long wood-polymers only show structural changes by side bond 

breaking and not by breaking of primary bonds, transformations by long-range transport of 

atoms are not possible in wood. The transformations are determined by interface processes 

and only may show a short- range like transport. Examples are given in 2.2. Although 

these transformations apply for “Newtonian” substances, similar behavior is sometimes 

expected to be possible for polymers  like wood, as also implicitly follows from the use of 

eq.(2.7.4). This thus has to be discussed. The short-range transformations show changes in 

the structure and no compositional changes. They occur by nucleation and diffusional 

growth. The interface controlled growth follows the kinetic equation as given in B(2011):   

c
c

2RdR E' E ' E '. . . .2 R exp sinh exp E '
dt kT kT h kT

     
          

     
   (2.7.1)  

The growth rate then is constant at a fixed temperature and each dimension of the growing 

particle of the product phase increases linearly with time. Following [5], the transformation 
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can be regarded in the time interval  0 <  < t. The increase of the number of nuclei per unit 

volume during the time d is: (dN/dt)d  where dN/dt is the constant rate of homogeneous 

nucleation per unit volume. When the isotropic growth is not restrained by other particles, 

each nucleus, occurring at , grows in the time interval  and t into a sphere of radius:  

(dR/dt) (t - ). The extended volume Ve of all the nuclei thus is:  

  



Ve 
4

3

dR

dt











0

t



3

.(t  )
3 dN

dt
d 



3
. dN

dt
. dR

dt











3

.t
4
  (2.7.2)  

When the growing particles impinge on each other, a common boundary is formed and the 

growth over this boundary stops while the growth continues in the other directions. At an 

increase of time dt, the increase of the volume dV is only possible in the untransformed 

part. Hence: dV =  dVe(1 – V) or upon integration: ln(1 – V) = - Ve or with eq.(2.7.2):  

  



V  1 exp(Ve)  1 exp  
dN

dt

dR

dt











3

t
4

3









 1 exp k

n
t
n    (2.7.3)  

Calling the extent of the reaction Y, eq.(2.7.3) becomes:  

  



y  1 exp k
n

t
n   (2.7.4)   

what is identical to the empirical Johnson-Mehl-Avrami Equation.  

Regarded by this derivation thus is not the transient stage of increasing rates, as applies for 

wood, but only the steady state stage of constant rates dN/dt and dR/dt which is not possi-

ble in wood and other cross-linked polymers. Also the end stage approaching equilibrium 

is not regarded and the equation thus is an approximation for homogeneous steady state 

behavior only.  

Transformations initiated by a fixed number of randomly distributed pre-existing nuclei N0 

with a constant and isotropic growth rate have a Ve of:  

  



Ve  N 0

4

3

dR

dt











3

.t
3

and thus : Y  1 exp  4N 0

dR

dt











3

t
3

3









    

 and n of eq.(2.7.4) is n = 3. In fine-grained materials, nucleation occurs on the randomly 

orientated grain boundaries and n = 4 in the early stages of the transformation. When the 

grain boundaries are exhausted, nucleation ceases and there only is growth in one direction 

perpendicular to the grain boundary and n = 1 at a later stage. There also are other possibil-

ities and possible values of n, mentioned in literature, which are:  

For polymorphic transformations and recrystallization n = 4 at homogeneous nucleation 

and n = 3 for nucleation at pre-existing nuclei. The same values of n apply at randomly 

distributed heterogeneous nucleation sites.  For nucleation at grain corners n = 4 and at a 

later stage n = 3 and for grain edge nucleation n = 4 and n = 2 at a later stage due to the 

two-dimensional growth on grain edges. Also for massive transformations therefore n = 2. 

For order-disorder transformations n = 3 for spherical grains of the ordered phase and n = 2 

for disc-shaped ordered grains.  

Transformations in wood are coupled with moisture content. At zero moisture content, 

only damage and decomposition may occur. Swelling is mainly perpendicular to the grain 

and n = 2 is what maximal can be expected, because there also is no nucleation. However, 

the moisture content is a linear parameter in the activation energy and volume. This means 

that the rate equation of a phase change will be volumetric with n = 1.  

For reactions between water molecules between layers the behavior can be approximately 

Newtonian and is for instance:  

dV/dt = - CV  or:  d(R
2
)/dt = - CR

2
     or: dR/dt = - CR/2 

having as solution: R = R0exp(- Ct/2).   

Thus as well as the volumetric change as the change of the dimension R is dependent of 
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time t to the power one, or n = 1. Also at the start of the process, during the delay time, the 

change has this exponential form, what means that n = 1 during the accelerated and decel-

erated stage of the transient behavior. Because the transformations in wood, as cross-linked 

polymer, can not show a stationary stage, n is always n = 1. A measured value of n, differ-

ent from 1 means that more processes than one are acting and the Johnson-Mehl-Avrami 

equation thus is a meaningless empirical power law equation for transient behavior and the 

exact method should be used with the tensor method to describe the behavior in all direc-

tions. From the separated measurements in the main material directions as well as the off-

axis directions, the volumetric descriptions can be given by these unidirectional data.  

 

2.8. Explanation of the empirical rate equations  

All transformations may fit, at low driving forces, the empirical equation:  

Y = 1 – exp(-   



k
n

t
n

)      (2.8.1)  

where Y is the extent of the reaction thus mostly the fraction of transformed material and k 

and n are constants. The explanation of this equation is given in 2.7 and is given by 

eq.(2.7.4). For transient processes the value n looses its meaning and eq.(2.8.1) is nothing 

more than a power law equation. In any case, eq.(2.8.1) can be the basis for the derivation 

of other empirical equations for low driving forces. After differentiation and elimination of 

t, this equation can be seen to follow the differential equation:  

  



dY

dt
 n.k.(1Y). ln

1

1Y





















11/ n

     (2.8.2)  

For small values of Y is: ln(1/(1 – Y)) = ln(1 – Y/(1 – Y))  Y/(1 – Y)  and eq.(2.8.2) be-

comes:  

dY/dt = nk  



1Y 
1/ n

. Y 
(11/ n)

    (2.8.3)  

For large values of Y approaching Y = 1 closely, eq.(2.8.2)  becomes:   

dY/dt = nk(1 – Y)    (2.8.4)  

because ln(X)/X approaches 1/X when X approaches infinity, and X = 1/(1 – Y) approach-

es infinity when Y approaches 1.  

Eq.(2.8.4) is equal to eq.(2.8.3), when n = 1 is inserted. This agrees with the result found in 

2.7 that at the end of every process n should approach n = 1.  

Eq.(2.8.2)  can be written:  

  



dY / dt

1Y 
(1 )

 kn 1Y 
. ln

1

1Y





















(11/ n)

 kn 1Y 
/ p. ln

1

1Y





















(11/ n)/ p















p

  

and the part between the square brackets can be expanded in the same way as done for 

eq.(2.5.3.4) giving:  

  



dY

dt


dY'

dt
. 1Y

1Y'











1
. Y

Y'











p

   (2.8.5)     

with: 

  



dY'

dt
 kn (1Y') ln

1

1Y'





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
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


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
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(11/ n)

 and  

  



p 
Y'

1Y'
.  

1 1/ n

ln 1Y' 








          (2.8.6) 

Yꞌ is the value of Y around which the expansion of the curve is made. It can be seen from 

eq.(2.8.6) that p 



 1 – 1/n when Yꞌ 



  0, and 



  



  0 when Yꞌ 



 1, as found before. As 

for all power laws, the powers p and 1 - 



  depend on the part of the curve that is fitted, 

thus on the choice of Yꞌ. 

It now is shown, that the often used empirical equation eq.(2.8.5), (used with Yꞌ =  0.5) that 
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fits the sigmoid curve of the transformations, is the same as eq.(2.8.1).  

Equation (2.8.1) also can be written as a power law in time t, using the same expansion as 

given for eq.(2.5.3.4):  

Thus: 

  



1Y  1Yt 0






.

t

t
0











p

 (2.8.7)  

With: p = 
  



k
n .t 0

n .n  

All empirical equations thus are different forms of the same equation eq.(2.8.1), which on-

ly applies for quasi Newtonian behavior and thus not for wood.  

 

2.9. Conclusions about phase transformations  

The extrapolation of the qualitative linear viscoelastic models of liquids and soft materials 

to wood-material, makes a discussion necessary of these models for the consequences. A 

theoretical derivation and correction of these models, based on the exact theory of molecu-

lar kinetics, thus is a first necessity. New theory is derived in chapter 2 about: nucleation 

and heterogeneous nucleation, (2.5), with the corrected “Tammann Hesse” equation, (2.6), 

and the explanation of other empirical nucleation equations, (2.5); further about the general 

diffusion equation of transformations, (2.3); the reaction order, (2.4); the activation volume 

parameters, (2.5); the power law (2.5); and the empirical power law rate equations, (2.8). 

As shown in 2, the phase transformation models of liquid-like materials, with proposed 

linear viscoelastic behavior only may apply for idealized “Newtonian liquids”, and certain-

ly cannot apply for a glassy and crystalline material like wood. In general, transformations 

models based on a free transport of structural molecules, can not be used for wood because 

the (infinite) long wood-polymers only may show structural changes by secondary side 

bond breaking. For wood only models based on the short range displacements are possible 

that only may give a structural change at an interface as a heterogeneous transformation. 

This diffusion at an interface is shown to follow the reaction equation as given in 2.3.  

For wood, only diffusive transformations are possible, because the martensitic trans-

formation will not occur in wood- and wood-products. Even when a martensitic configura-

tion may exist in wood, the elementary crystalline fibrils in wood of 3 nm are too small to 

be able to build up high enough internal stresses for that transformation. A derivation of a 

general diffusion equation for all kinds of driving forces, eq.(2.3.5), is given in 2.3, show-

ing that Fick’s first and second law are not always applying special cases. Because for 

wood, diffusion occurs at interfaces, the diffusion equation gets the form of the monomo-

lecular reaction equation, eq.(2.3.10).  

It is shown in 2.4 that only first order reactions may occur in wood. A value of the order of 

one is also measured. The also measured slightly lower value than one indicates that there 

is another successive reaction. This second reaction can be regarded to be of zero order, 

because of the nearly constant reactant.  

It is shown in 2.4.2 that the classical steady-state model and classical equilibrium model of 

nucleation are not right. The right basic equations for diffusion and structural changes are 

derived in B(2011) and in Section B.4. and should be used in stead.  

As discussed in 2.5.1, the classical nucleation theory is not right and thus also wrong is, 

the thereupon based “Tammann Hesse”- equation (with its impossible negative driving 

force and the need of infinite energy to obtain equilibrium) that even is proposed to be the 

basic equation for all transformations and even for all time dependent behavior (including 

creep). The right nucleation theory shows that nucleation is just an example of a common 

structural change process. The other aspects also are derived as e.g. the explanation of het-

erogeneous  nucleation, without needing the non-existent surface stresses in solids of the 
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classical theory, and e.g. the value of S’/k = 2 as boundary between the occurrence of a 

faceted and a diffused interface. It appears that the empirical Tammann Hesse equation, 

(eq.(2.6.5)), follows from a fit of limited T values. When T approaches zero this Tam-

mann-equation does not apply but the sinh-form of eq.(2.6.3), showing the dR/dt ≈ 

2CD(ΔT)/aꞌ  for small T values. It thus is necessary to replace the Tammann-Hesse equa-

tion by the exact equation, eq.(2.6.3), which follows from the special form of the activation 

volume parameter.  

The “power law” equation is derived in 2.5.2 from first expanded terms of any equa-

tion. Thus, every equation can be written as power law-equation. By using the power law 

form, it is possible to compare and explain the power value n of eq.(2.5.3.4) of the differ-

ent empirical equations with those of the exact equation, eq.(2.5.3.6), n = 0 to get infor-

mation on this activation volume parameter. It shows e.g. the special form of 0 for nu-

cleation, eq.(2.5.3.8) and eq.(2.6.3), etc.   

To study properties as activation energy and volume of possible transformations in ma-

terials, a study of movement the free spaces (the activated sites) is possible that is the same 

for self-diffusion, creep, flow, rupture and transformations as melting. Creep and stress 

pulse experiments show all the possible forms of the activation volume parameter (2.5). 

Creep tests of wood show comparable values as found for other strong structural materials.  

The derivation of the empirical Johnson-Mehl-Avrami equation (see 2.7) shows that 

this equation only applies for the steady state stage of the transformations and thus can not 

apply for cross-linked polymers like wood which cannot show a steady state stage, and the 

equation thus is a meaningless power law equation for wood. Also the other empirical rate 

equations are shown, in 2.8, to be related to this equation and to apply only for fictive 

Newtonian materials.  

 

3. Thermal analysis of transitions and of decomposition of wood  

3.1. Introduction  

The general equilibrium theory of molecular transport kinetics, derived in [2], applies, by 

the same equation, for all time dependent processes. Thus applies for the thermo-

mechanical behavior as creep and damage etc. [2], due to external and internal stresses and 

also applies for the processes due to high temperature alone, and due to the chemical or 

physical driving forces of transformations as for instance of glass-transition ([2] pg. 88), 

aging, nucleation, annealing [3], etc. This  implies, that the incorrect model of a free vol-

ume change [3] to explain glass-transition has to be rejected and also the wrong nucleation 

theory and rubber-theory, [4], etc., as is discussed at 2 and appendices A and B.  

All phenomena are explained precisely by one reaction-equation (correlation close to 

one for tests on the same specimen), and the differences between the processes are only 

due to different activation volume parameters.  

To find the parameters for transformations, decompositions and some other structural 

change processes, by thermal analysis, the temperatures should be found where, the driving 

forces, or changes in bonding or molecular arrangements, will cause an aberration on the 

rate of temperature change of a specimen when the environment is heated (or cooled); see 

fig. 3.1. The driving force then is caused by a more or less abrupt change in the heat con-

tent. Such processes may exist in  wood, occurring only at high temperatures after the first 

transformation and decomposition. At lower temperatures, the temperature-time and stress-

time equivalence make it possible to detect other processes in wood that are too slow to be 

measured at common temperatures. The changes, occurring by these slow chemical reac-

tions (or analogous physical processes), will depend on temperature, history, stress, etc. 

and are e.g. known as aging effects (see 4).  
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The techniques used in thermal analysis are:  

- the differential thermal analysis (DTA) in which the temperature difference between a 

substance and a reference material (with known properties and no transitions etc. in that 

temperature range) is measured as a function of the temperature while both materials are 

subjected to a controlled temperature program.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fig. 3.1.a.  

 

DSC, DTA, TG and DTG 

curves of wood (A Hinoki, B Katsura) 

measured in air.  

Heating rate: 10 
0
C-min. See [12]. 

         Temperature in 
0
C 

               fig. 3.1.b. DSC curves measured in 

                air,A, and in nitrogen B on Hinoki d, 

                Akamatsu b, Buna k, Kusu h.  

 

- the differential scanning calorimetry (DSC), being the same as DTA however instead of 

the temperature difference, the difference in energy inputs of both materials is measured.  

- the thermogravimetry (TG) in which the mass of a substance is measured when subjected 

to a controlled temperature program (also gas evolution etc. can be measured). The deriva-

tive thermogravimetry (DTG) shows the same peaks as the other methods (see fig. 3.1.a).  

- the thermodilatometry, in which the dimension of a substance is measured when subject-

ed to the temperature program.  

- the thermomechanical (non-oscillatory) and dynamic thermomechanometry where the 

static modulus and dynamic modulus (with damping) are measured as function of the tem-

perature at a temperature program.  

- Other physical properties as sound emission, acoustic wave behavior; optical, electric, 

magnetic, etc., characteristics also can be used.  

 

3.2. Thermogravimetry of wood.  

By thermogravimetry, the decomposition at transformations of wood mostly is determined 

by measuring the weight loss. However there also is a weight loss by drying or disappear-

ance of filler material at heating and there also is bond breaking without weight loss. For 

wood, therefore TG as well as DSC is used. The enthalpy found and reported by these 

methods is only indicative because of:  

 

        temperature in 
0
C 
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the gas lost; the combustion of these gasses, determining also the reaction within the spec-

imen; the successive and simultaneous reactions, giving overlapping peaks; the assumed 

wrong equation and driving force and wrong reaction order, (different from order one) for 

the determination of the activation enthalpy, assuming also that only one process is acting, 

giving e.g. apparent changing activation parameters with the extend of the reaction; the 

structural transitions in wood that only are possible after the previous, or at the same time 

acting decomposition reactions, etc.  The peaks further may result from many influences, 

some of which are characteristic of the tests and sample holder assembly and not of the 

sample so  that the measurements of all laboratories differ from each other. The wide range 

of reported activation energies, obtained by the different interpretations, equations and de-

vices, thus is not astonishing. The results thus have no meaning unless they agree with the 

results of the thermo-mechanical method.  

Because of the mentioned influence of the reaction of the gasses with air, the meas-

urements in air have no meaning for the parameter estimation of transformations in wood. 

This should be done in an inert environment as in nitrogen and only these measurements, 

as given in fig. 3.1.b, thus should be discussed.  

It is seen in fig. 3.1.b that endothermic melting and degradation causes the possibility of 

exothermic degradation, so that both processes are overlapping. In principle thus only one 

two-stage process is acting. (The first process creates the sites of the second process). 

Important for the thermo-gravimetric analysis is the proof in 2, that all transformations 

follow one or two first order reactions that are not directly dependent on the overall con-

centration. This is not known and every analysis in literature is based on one reaction of a 

broken order or of even a higher order than one, giving wrong results. For wood, values 

close to order one are measured. The remaining small deviation from this order one indi-

cates that another process is acting. In the past (see e.g. [10]) the fit of the data was done as 

wavy as possible, even following the small steering deviations. The resulting  many very 

small peaks, (crinkles on the main peak), that are also influenced by the used test proce-

dure and equipment of the thermo-gravimetric tests, were regarded as separate adjacent 

mechanisms. Mostly out of the many peaks, about 5 peaks where arbitrarily chosen to rep-

resent the degradation of: the filler mass and hemicellulose; crystalline cellulose; amorph 

cellulose; bonding by lignine; lignine products. This arbitrary split of a reaction into many 

forward reactions, with wrong activation energy parameters, leads to meaningless reaction 

orders between 0.6 and 4, and not existing enthalpies of the peaks between 38 and 175 

kcal/mol. Further, as discussed before, wood is a co-polymer and thus will not show sepa-

rate transition peaks of the different components. Changing the composition of wood by 

removing a component then will not result in a disappearance of the peak of that compo-

nent but will shift the single peak of the co-polymer wood to lower temperatures. For in-

stance, the peak of the DTG-curve, follows from the steepest slope of the TG-diagram of 

fig. 5.1. Wood does not show the peaks (steepest slopes) of the components and the peak 

of holocellulose (what is wood with removed lignin) shifts to a lower temperature. Thus, 

possible other peaks are due to enforced testing and damage and should not be associated 

with transformations of components, as is done e.g. in [16] by the multiple transitions 

model (of Huet).  

Regarding gas evolution of wood powder, (i.e. of a destroyed chain structure, inferior 

to the structure of wood) the following description can be found in literature [7]:  

At high temperatures, there always are chemical reactions also with air causing decomposi-

tion and pyrolysis. Below 100 
0
C (the boundary where bonded water is freed), only drying 

occurs and chemical reactions in filler material can be neglected up to about 150 
0
C. At 

that temperature, there is no disintegration but volatilization of wood extractives and prob-

ably of some low molecular weight lignin filler material. Between 150 and 200 
0
C the gas 
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formation starts of mainly CO2 and CO, showing carbohydrate disintegration (probably by 

pyrolysis of filler material and non-structural lignin and hemicellulose). Above 200 
0
C, 

organic acids may evolve from the side groups of hemicellulose. Lignin degrades to pro-

duce aromatic compounds and a variety of low molecular gases. Above 280 
0
C the CO2 

and CO production goes down (thus showing the end of a peak) and combustible Carbohy-

drates (CnHm) are formed and the reaction becomes exothermic. Above 500 
0
C dissociation 

is noticeable by the start of strong hydrogen (H2) formation that dominates above 700 
0
C.  

However, higher transition temperatures are found for less degraded test-material than the 

used milled powders.  

 

3.3. Thermogravimetric  analysis  

The kinetic analysis is based on the general forward reaction equation eq.(2.4.1.12):  

  




1

a
.
dA

dt
 kA

na B
n b C

n c

 
what is shown there to be, with A = A0 – X:  

  




1

a
.
dA

dt
 k' A0 X 

na n b n c

  
with the conversion X and thus in general applies:  

- dA/dt  =   



k''A
n

  

The concentration A in this equation may be replaced by other linearly related variables as 

pressure or volume during a gas reaction or the loss in weight in a pyrolysis reaction. The 

equation can be written:  

ln(- dA/dt)  = nln(A) + ln(kꞌꞌ) = nln(A) + ln(exp(- E/kT)) = nln(A) + ln() – E/kT  and 

plotting ln(- dA/dt)  versus 1/T for different temperatures at the same value of A, a straight 

line plot is obtained with a slope:  

d(ln(- dA/dt) )/d(1/T)  =  - E/k,  

giving the activation energy E. The order n of the reaction is supposed to follow from the 

slope of the straight line of ln(- dA/dt) versus ln(A) by:  

n = d(ln(- dA/dt))/d(ln(A)).  

However, this is not right because E also is dependent of A. As shown before the order of 

the reaction is always n = 1.  

The basic kinetic transport equation for a forward and backward reaction, e.g. 

eq.(2.4.2.11), is, with reactant N and Aa as activation volume, with constant 1:  

- d(NAa)/dt = 2(NAa)exp(- E/kT)sinh((E + feAa)/kT)    (3.3.1) 

For Newtonian liquids, discussed in 2, sinh(x)  x. For noticeable transformations in wood 

the driving force is high and sinh(x)  exp(x)/2 and eq.(3.3.1) becomes:  

- d(NAa)/dt = 2(NAa)exp(- E/kT)exp((E  + feAa)/kT)    (3.3.2)  

For a first order transformation there is an enthalpy and entropy change E and the work 

of the (chemical) driving force is: E  = H - TS = f ꞌAa -  f ꞌꞌAaT,    while the work 

due to the stress of the surrounding elastic material on the activated site, feAa, mostly is 

negligible. For decomposition at high temperatures, the product phase is determining for 

the driving force and because work is done at the surface of the product causing a molecu-

lar step increase of the product, the work fAa is, integrated, any moment, proportional to 

the amount of product, thus to the loss of weight, or to the concentration of sites of the 

product: N0 - N per unit volume. Eq.(3.3.2) thus becomes:  

- d(NAa)/dt = 2(NAa)exp(- E/kT)exp((c(N0 – N)Aa)/kT)    (3.3.3’)  

or because NAa is proportional to the active weight per unit volume w, this equation be-

comes general in the relative weight W = w/w0:  

- dW/dt = Wexp(- E/kT)exp(c 1(1 – W)/kT – c 2(1 – W)/k)   (3.3.3’’)  
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where  = ꞌ - ꞌꞌT,  by the enthalpic and entropic component of E, is inserted. This equa-

tion can be given in the extent of the reaction: y = (w0 – w)/w0 = 1 – W:  

- d(1 – y)/dt = dy/dt = (1 – y)exp(- E’/kT)exp(c 1y/kT – c2y/k)   (3.3.3)  

With the dynamic method, by heating the specimen at a constant rate, it is possible to de-

tect all existing transition peaks successively.  

Heating a specimen at a heating rate 1/, the time t of the increase of the absolute tempera-

ture from zero to T, follows from t = T and the rate of weight loss is: 

 dW/dt  = dW/dT  = - dy/dT  

This leads for the first order reactions in wood to:  

dy/dt = dy/dT =  (1 – y)exp(- E/kT)exp(c 1y/kT – c 2y/k) or:  

dy/dT  = (1 – y)exp(- E/kT)exp(c 1y/kT  - c 2y/k)    (3.3.4) 

At the top of the peaks of the rate plot, thus at the maximal rate, is: d
2
y/dT

 2
 = 0 or: 

∙∙exp(- E/kT )exp(c1y/kT – c2y/k)[- dy/dT  – (1 – y)d(E/kT)/dT  +  

+ (1 – y)d(c1y/kT – c2y/k)/dT] = 0, or: 

- dy/dT  =  (1 – y)d(E/kT)/dT  – (1 – y)d(c1t/kT – c2y/k)/dT     (3.3.5) 

In this equation is d(E/kT)/dT  =  d((H – ST)/kT) =  - H/kT 
2
   

and: d(c 1y/kT – c 2y/k)/dT  =  (c 1/kT)dy/dT – c 1y/kT 
2
 – (c 2/k)dy/dT    

and eq.(3.3.5)  becomes:  

dy/dT(1 – (1 – y)c 1/kT  + (1 – y)c 2/k)  =  (1 – y)(H/kT 
2
 – c 1y/kT

 2)
     or:  

  



1 1 y .c1 / kT  (1 y).c2 / k

H  c1 y
..exp 

E

kT


c1y

kT


c2y

k











1

kT 2     

or in molar quantities, where R is the gas constant:  

  



ln
1 1 y .c1 / RT  (1 y).c2 / R

hN a H' c1y 
..exp

S

R


c2y

R





















H'

RT


c1 y

RT
 ln

1

RT2













 

Because the left term is not noticeable dependent on the peak-temperature T and on the 

peak value y, is: c 2T >> c 1 and c 1 << H’ and c 2 << S, thus is:  

  



ln
1 (1 y).c2 / R

hN aH'
..exp

S

R


c2 y

R





















H'

RT


c1 y

RT
 ln

1

RT2













   (3.3.6)  

and testing at different rates , in a sufficient small range of 1/T to neglect the differences 

of the peak values y at the different peak-temperatures, T gives:  

  



d ln 1/ RT2  
d 1/ T 

 
H  c1y

R
 

H

R
      (3.3.7)  

For wood and wood-products, the term c1y in this equation will not have a negligible in-

fluence on the mean value H as is shown below.  

In [12], thermogravimetric and differential scanning calorimetry measurements of wood 

are given (see fig. 3.1). It can be seen from the data in fig. 3.1.b in nitrogen that there is an 

endothermal melting peak of possible melting and endothermal decomposition of the crys-

tallites, immediately followed by exothermic decomposition that overlaps the melting. The 

onset of the exothermal process may even start before endothermic melting (as given by 

curve k in (B) of fig. 3.1.b) and it is clear that both processes interact and are overlapping 

making it impossible to locate the true peaks. The shoulders (peak I and IV) have no mean-

ing, not only because the intensity is too small for a noticeable contribution, but because 

the base-line of the graph is wavy instead of horizontally, as in all other investigations in 

the past. Thus only peak II and III give the occurring endothermic and exothermic reac-

tions, showing about the same activation energy because of the overlapping. The found 

enthalpies by the DSC-method, H – c1y (eq.(3.3.7)) of the peaks, at about y = ½, are 43 to 
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49 kcal/mol. The TG-method, did mainly show the second process with lower values of 23  

to 30 kcal/mol for the equivalent peaks. All these enthalpy values are comparable with 

those obtained by thermomechanical measurements at lower temperatures of creep- and 

strength tests (see e.g. chapter 9.1 of [2]). The lower TG-values of the enthalpy with re-

spect to the second process, measured in [13], is also due to a too high heating rate with 

respect to the long delay time of the processes. This second process was found in [13], by 

more precise (non-dynamic) isothermal thermo-gravimetric measurements in that tempera-

ture region. The measurements were done at different temperatures, in an inert environ-

ment, using flowing nitrogen. Eq.(3.3.4) can be written for this case:  

  



ln
dy

dt









 ln . 1 y .exp

S

k


c2y

k





















H  c1 y

kT
   (3.3.8)   

showing a straight-line plot of ln(dy/dt) versus 1/T, at the same conversion: y,  at the dif-

ferent temperatures (see fig. 3.2 ). Eq.(3.3.8) is always applied in literature with the as-

sumption that c1 = c2 = 0, and not with the order n = 1, thus according to eq.(3.3.9).   

  



ln
dy

dt









 ln .exp

S

k



















 n. ln(1 y)

H

kT
    (3.3.9) 

what wrongly leads to changing values of H and n and a value of n, different from n = 1. In 

table 3.1, the measured activation energies according to eq.(3.3.9) for each value of y are 

given with the theoretical values of eq.(3.3.8) that is drawn through the points y = 0.4 and 

0.8. In fig. 3.3 the measurements are given. The good fit of the theory for cotton shows that 

clearly one process is acting. It can be seen by the kinked lines of pine craft of fig. 3.3a, 

(even the line of 342 
0
C shows a kink) that 2 processes are acting. This also is shown in 

table 3.1, where the dominating process, at the end of the reaction, shows  a constant acti-

vation energy of 35.4 kcal/mol while the first process has the same properties as for cotton. 

Further, it also follows from the apparent value of the reaction order n, when one process is 

assumed to act instead of two. For bleached pine kraft, n of eq.(3.3.9) is measured to be:  

n = 0.39 (0.95) at 268.1 
0
C  

n = 0.48 (0.84) at 285.7 
0
C  and  

n = 0.70 (0.84) at 303.7 
0
C,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fig. 3.2. Isothermal differential logarithmic plot of rate of weight loss dy/dt 

             in mg/min. vs inverse temperature for bleached pine kraft pulp [13] 

 

 

  ln(rate of weight loss, dy/dt in mg/min) 
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Table 3.1. Measured and theoretical activation energies for cotton linters pulp and 

                  for bleached pine kraft.  

 
Extent of the       Activation energy in kcal-mol  

Reaction:             cotton                       pine kraft  

  y                measured         theory                      measured  

 
0.1   42.8   39.1    56.3  

0.2   36.9   36.9    51.3  

0.3   33.9   34.6    45.7  

0.4   32.3   32.3    41.9  

0.5   29.4   30.0    37.8  

0.6   27.5   27.7    36.4  

0.7   25.1   25.4    35.4    

0.8   23.2   23.2    35.0    mean 35.4  

0.9   20.2   20.9    35.8    

 
 

thus showing at least two processes to be present of order zero and of order one. The val-

ues in brackets are for the plots at conversions above 0.6, showing mainly the influence of 

the second process thus mainly the influence of one process and thus showing the order 

approaching one. For Cotton linters, the true order n = 1 was measured, showing that only 

one process is acting. 

 

fractional weight  

remaining (1 – Y) 

 

Pine kraft 

 

 

 

 

 

 

 

Cotton pulp   

 

 

 

 

 

                 

 

 

 

fig. 3.3. Measurments of a) bleached pine kraft and b) cotton linter pulp [13].  

 

The solution of the theoretical equation eq.(3.3.8) may show a long delay time, before 

the process becomes noticeable. It appears that for wood during this delay time an other 

(first order) process is acting, (that produces the sites of the second process), with a nearly 

fractional weight 

remaining (1 – Y) 

ln(time in minutes) 

ln(time in minutes) 
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constant reactant, and thus can be regarded as a quasi zero order reaction. This system was 

confirmed, by the thermo-mechanical method in [2], to be present for creep and damage 

processes in wood at low temperatures. 

  

3.4. Powder collapse method  

Conclusions, in literature, about “low” transition temperatures of wood and the constitu-

ents of wood, as cellulose, lignin and hemicelluloses, are also based on the investigations 

by the powder collapse method, what thus need to be discussed.  

A powder of the material is compressed under constant load in a glass capillary and the 

thermal softening point is determined as the temperature at which the powder collapses 

into a solid plug. This temperature is dependent on the applied stress thus is not a real glass 

transition temperature. Further, friction of the powder particles is due to formation of a 

new type of side bonds at the former broken bonds by grinding and the collapse is due to 

this type of side bonds only. By the isolation of the components of wood, the physical and 

chemical properties may change strongly. Cellulose is strongly degraded by the common 

delignifying agents. However by nitration, with help of non-degrading acids, undegraded  

cellulose nitrate can be obtained. But, as mentioned before, this gel has, as other cellulosic 

products, totally different properties from in situ wood cellulose.  

Also lignin changes, not only physically, by isolation with solvents. For instance, Periodate 

lignin (showing still a high softening temperature Ts 



 200  
0 
C in the powder collapse  

test) has lost methoxyl groups. This change also depends on the type of solvent. For in-

stance, liquid ammonia reduces the plastization temperature of isolated lignin from:  

 

 
 

fig. 3.4. Relative plug length and plunger velocity vs. temperature for aspen 

             dioxane lignin (m.c. 7.2 %) in the powder collapse test [11].  

 

+ 125  
0
C to - 30  

0
C and enters in the cellulose crystallites modifying the lattice. Milled 

wood lignin is chemically the closest to native lignin. However, the molecular weight is 

only 11000 while native lignin has an undetermined high molecular weight.  

The low value of the molecular weight of isolated lignin and hemicellulose has influence 

on the softening temperature. Spruce dioxane lignins (obtained by dioxane as solvent), 

showing the lowest lignin softening temperature   



Ts , shows an increase of this temperature 

from   



Ts  = 126  
0 

C at a molecular weight of M = 4300 to   



Ts  = 176  
0
C at a molecular 

weight of M = 85000. From these powder collapse tests,  the following tendency of the 

influence of M on   



Ts  can be derived:  
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

Ts   400 + 5.810
 - 4
M     (with M < 190000 and   



Ts  in degree Kelvin),        (3.4.1) 

predicting a molecular weight of M = 190000 to be the value, where above the chain length 

has no further influence on TS in the powder collapse tests, because: Ts < 510 K = 240 
0
C. 

This follows from tests on dry wood powder, showing only one softening peak at about 

220 to 240  
0
C, the same as for lignin, the lignin-hemicelluloses complex, as well as for 

cellulose. This is confirmed by tests on pulps (cellulose), holocellulose (= cellulose + hem-

icellulose) and birch wood with removed xylan (thus removed hemicelluloses), showing all 

the same high value of Ts in the dry state. The reason of one and the same Ts for all com-

ponents and co-polymers is certainly due to the collapse of the grain structure by side-bond  

failure and degradation of the locally high loaded grain particles by splitting of the OH- 

side bonds making plastization possible. The high weight loss (~ 35%) at the high testing  

temperatures shows that decomposition is an accompanying phenomenon of this softening. 

This behavior of the wood powder test agrees with the results discussed later concerning 

the modulus of elasticity, the strength, thermal expansion, and the specific heat, all indicat-

ing that dry wood does not show a transition up to the high temperature of degradation.  

Because from wood extracted lignins and hemicelluloses are polymers with a low molecu-

lar weight (m.w.), the moisture dependency of the softening temperature  

  



Ts ’ is comparable with all other types of low m.w. polymers giving:  

  



Ts ’    



Ts  - 550       (  <   



s , for extracted lignins and hemicelluloses)      (3.4.2)  

 
 

fig. 3.5. Influence of increasing molecular weight on the softening temperature 

    of spruce dioxane lignins [11].  
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fig. 3.6.  Influence of moisture content on the softening temperature of 

              spruce dioxane lignins [11].  

 

explaining the measured low transition temperatures of the components (fig. 3.6). Contrary 

to the general assumption in literature, the layers containing lignin and hemicelluloses 

don’t show a behavior according to heterogeneous blending, by showing the same transi-

tion temperatures for the mixtures as for the separate components. If this was the case, the 

transition temperatures would be 20 
0
C and 70 

0
C for wet (resp. hemicellulose- and lignin-) 

layers and would be 150 
0
C and 210  

0
C for the dry state, as is measured for these compo-

nents by N. Takamura, according to eq.(3.4.2) and similar to fig.(3.6). This is not occurring 

for wet intact wood powder and also dry wood only shows one transition temperature 220 
0
C, showing bonded chains to be present in the powder grains. The mixture thus behaves 

homogeneously similar to solutions, or alloys or copolymers, thus showing bonded  

 
fig. 3.7. Twin curves, of the two softening points in wet spruce wood powder  

               (Relative air humidity above 95%) of the non-structural filler mate- 

               rial (140 
0
C) and of the wood co-polymer (219 

0
C) [11].  

 

lignin and hemicellulose chains. The additional peak at 140 
0
C in Fig. 3.7 of wet spruce 

powder at 23% m.c. (R.H. of the air above 95%) is due to the moisture dependence of the 

activation volume of loose filler material, thus due to the relatively short polymers in the 

powder. This influence is confirmed by tests on wet kraft pulp (cellulose) powder that may 

show a similar just noticeable transition peak (around  140 
0
C) as for wood powder, when 

there is a higher pentosan (a non-structural linear hemicellulose) content. The powder col-

lapse tests show the importance of the molecular weight and moisture content on the sof-

tening temperature. Because of the low molecular weight and frictional bonds, the behav-

ior is not comparable with that of solid wood.  
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3.5. Dielectric properties  

Dielectric dispersion, may sometimes give information on the mechanical behavior of ma-

terials. For wood however, this is not the case. The dielectric behavior, only may show 

mechanical properties when the side bonds are dipoles and dipole motion is possible by 

rotation of side groups. Several polymers for instance of the methacrylate series do show 

this by the same activation energies of ~ 24 kcal/mol, for dielectric relaxation and for me-

chanical relaxation. For wood, this is not possible because in cellulose the OH-groups are 

symmetrical attached and are dielectric neutral. The straight cellulose chains in wood pre-

vent non-symmetrical binding of water, contrary to the cellulose types of plants (cotton, 

starch, etc.) where this is possible. Lignin also is neutral because of the random orientation 

of the OH-groups. Dielectric measurements show other processes than found by mechani-

cal testing and the much lower activation energy indicates that it only gives information on 

the special water-structures at the free surfaces of wood that still are present in dry wood, 

and determine only apparent dielectric properties of wood. The dielectric constant  of wa-

ter: 



w = 81, while 



  of wood is about: 



  = 2. For the lightest wood species 



  



 1 and 



  

of these species may approach 



w = 81, when saturated with water. As expected from the 

dependency of the activation energy on the moisture content, and as is measured, the loga-

rithmic blending rule applies for the influence of the moisture content on 



 . In the neigh-

bourhood of a peak in the dielectric loss tangent: tan(



 ) however, the influence of water is 

higher than according to this rule, showing an additional resonance behavior, e.g. at the 

peak in fig. 2 of [16]. This resonance peak, around 10
 7

 Hz is the same for wood, cellulose 

and lignin (see fig 6.125 of [9]), and is also found in other materials as in paper and rub-

bers and even in dielectric neutral materials, because ions at grain boundaries and pores 

may provide with water molecules the same structures as found in wood. This peak disap-

pears when the water is removed and it also disappears in pressed wood, (see fig. 6.123 of 

[9]), because then the pores are closed by the pressing, reducing the free surfaces. Thus the  

 

   tan δ               White pine [19]  

 

    tan δ              Western red-ceder [19]  
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        logarithmic decrements [9]  
 

 

 

 

 

 

 

fig. 3.8. Internal friction. 

peak around 10 
7
 Hz has no influence on the mechanical properties and has nothing to do 

with a transformation, as is stated in [16] and in mentioned EC and RILEM  publications, 

but is simply the resonance peak at the eigen frequency of the water dipole resonator.  

This mechanism thus only can be noticed at this high frequency of 10
7
 Hz. The high fre-

quencies also cause heating of the water by molecular friction due to the oscillations what 

is used for kiln drying of steam permeable species of wood.  

The measured overall dielectric tan(δ), outside the peak value, of “dry” wood is totally dif-

ferent in the different investigations. In the investigation of Brake and Schutye of oven 

dried wood at 20 
0
C, see fig. 6.123 of [9], a decrease of tan(δ) with increasing frequencies 

between 10 and 10 
5
 Hz is measured, while the investigations of Kroner (see the older 

German publication of [9] of real dry wood) there is strong increase of tan(δ) up to the top 

near 5.10
6
 Hz. In fig. 2 of [16], there is a decrease until 10

3
 Hz and an increase above 10

3
 

Hz (indicating that this ‘dry’ wood has a m.c. of about 4%. The real, right value of tan(δ) 

of wood follows from mechanical testing, showing (as common for glasses) a, constant, 

loss tangent, tan(δ), and logarithmic decrement Δ (



 π∙tan(δ)), at common temperatures, in 

the whole, technical frequency range of about 10
- 5

 to 10
4
 Hz, (see fig. 3.8), depending on 

the loading level. Only at very high loading levels, additional damage peaks may occur. 

This constant value of tan(δ) is explained by the theory (see [2], pg. 96 to 100), as a conse-

quence of the special property of the activation volume. The same property explains the 

time-stress and time-temperature equivalence of processes in wood.  

 

4.     Aging of wood  

4.1. Measured aging  

For the structural use of wood, transformations play no role. At common temperatures, 

loading levels and moisture contents there is no indication of any transformation and there 
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thus also is no aging or change of crystallinity, chemical changes, or change of concentra-

tion of flow units (determining creep etc.) during very long times. Long term loaded wood  

fig. 4.1. Change of strength, dynamic Young’s modulus and piezoelectric modulus 

              with time of old Japanese cypress wood [9]  

 
(Hinoki) of old Japanes temples, did show an increase of strength during the first 400 years 

and then a slow decrease during the next 1000 years, due to a process of increase of crys-

tallinity and a slower process of decomposition of cellulose (see fig. 4.1.). This follows 

from a piezoelectric shear modulus that shows the same behavior and from the X-ray dif-

fraction patterns being sharper for 350 years than for 8 years old wood and being diffuse 

for 1400 years old wood, indicating the decrease of crystallinity although the strength and 

stiffness still was higher than for 8 years old wood. Aging of wood at normal conditions 

and low stresses thus is extremely slow and the changes at common times are not noticea-

ble. If not neglected, a net strength increase, at low or zero stresses, could be accounted for 

of about 1 % in 10 years (during the first 400 years) at common temperatures (indicating 

the common creep value of the activation volume parameter of this kinetic process of  

n = 33).  

  

4.2. Measured accelerated aging of wood  

Accelerated “aging” tests at high temperatures (115 to 175 
0
C, at a moisture content of 

about 5%) are e.g. given in [14]. The rate of deterioration of wood, by isothermal heating 

during some time, was measured by the decrease of weight, the decrease of the modulus of 

elasticity and the decrease of strength. The decrease of bonds is proportional to the weight 

loss and the loss of strength. The “strength” or work to failure   



f.A , thus is proportional to 

the residual bonds thus proportional to the residual weight w (or energy in the DSC-

method) and thus to the concentration of the reactant.  

The strength reduction equation, eq.(3.3.2), thus becomes:  
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d(N A) E ' cN. .N A exp exp
dt kT kT

    
       

   
     (4.1)  

with E’ = E -   



E  and   



f.A  = cN or in general:  

  




dW

dt
 W.exp 

E'

kT









.exp

c1 W

kT


c2 W

k









   (4.2)  

or given in the extent of the reaction: y = (w0 - w)/w0 = 1 – W:   

  




d 1 y 

dt


dy

dt
 . 1 y .exp 

E'

kT









.exp

c1 1 y 
kT


c2 1 y 

k









   (4.3) 

Integration gives:  

    1
1 1 1 2

1 2

E E c / kT c / k t exp E '/ kT
y 1

c / kT c / k

   
 


       (4.4)  

where E1 is the exponential integral and E1
- 1

 is the inverse of the exponential integral. 

Eq.(4.4) only applies as long as the driving force is high. Integration of the general sinus-

hyperbolicus equation that also applies in the end state gives as solution a row of exponen-

tial integrals. However, for very low driving forces a simple approximate solution is possi-

ble for fitting and parameter estimation.  

Eq.(4.4) shows that damage increase at the start can be very small and may suddenly in-

crease to failure at the end of the lifetime.  

For comparison with test results and analysis in literature, an approximate solution of 

eq.(4.3), called integral method, based on a constant driving force, has to be used. Thus:  

  



dy

1 y  .exp
E'

kT









.exp

c1 1 y / 2 
kT


c2 1 y / 2 

k










. dt

    
where for each value of y, the mean driving forces c1(1 - ym) and c 2(1 – ym).T  are used, 

according to the always so applied integral method of literature.  

Integration of the last equation then gives:  

  



 ln 1 y  t..exp
E'

kT









.exp

c1 1 y / 2 
kT


c2 1 y / 2 

k











   
with ym = y/2, so that:  

ln(ln(1/(1 – y) = ln(t) + ln(  



.exp(S/k)) - H/kT  - c 2(1 – y/2)/k + c 1(1 – y/2)/kT    

This can be written:  

Log(t) = log(ln(1/(1 – y))) – log(  



.exp(S/k) + (H/kT + c 2(1 – y/2)/k +  

                                          - c1(1 – y/2)/kT)/2.3     

The time t is in seconds, when written in days td , the equation becomes:  

Log(td) = - 4.94 – log(  



.exp(S/k)) + log(ln(1/(1-y))) + 0.4343c 2(1 – y/2)/k +  

                                         + 0.4343(H/k – c 1(1 – y/2))/T            (4.5)  

To fit this equation, two measured points y = 0.1 and y = 0.5 of [14] are used:  

Log(td) = - 4.94 – 9.8 + log(ln(1/(1-y))) + 2.02(1 – y/2) +  

                                          + 0.4343(16736 – 3074(1 – y/2))/T          or: 

Log(td) = - 14.74 + log(ln(1/(1-y))) + 2.02(1 – y/2) + (5933 + 667.5 y)/T          

             = C1 + C2/T      for each value of y.  

From this fit follows: H/R = 16.736 or: H = 2  



.16.736 = 33.5 kcal/mol.  

The apparent values for y = 0.1 and 0.5 are: 2  



.(16.74 - 0.95  



.3.07) = 27.6 kcal/mol.  

resp. 2  



.(16.74 - 0.75  



.3.07) = 28.8 kcal/mol.  

For the loss of weight and reduction of the modulus of elasticity at y = 0.05 (the 95 % sur-

vival boundary), activation enthalpies of 28.9 kcal/mol resp. 29.3 kcal/mol follow from the 

data. The measured values predict a 5% loss of the weight at 30 
0
C after 20000 years. For a 
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5% loss of the modulus, at 30 
0
C, 32000 year is predicted. A 5% loss of the strength will 

occur in 1300 years at 30 
0
 C because of the low activation energy at the start. These reduc-

tions, by heating alone as driving force, are orders lower than the reduction found in 4.1, 

according to the descending branch of aging at normal climatic conditions with changing 

temperatures and moisture contents and at the common low stress-levels of old buildings. 

In [10] results of isothermal thermo-gravimetric measurements are given, between 93.5 

and 280 
0
 C with the Arrhenius plot, based on the first order reaction equation:  

 dW/dt = - kW, that may apply outside the delay time. The given plot shows an activation  

 

Table 4.1. Measured and theoretical activation energy parameters of wood  

__________________________________________________________________  

                             C1                                        C2  

y       measured  theory        measured             theory  

__________________________________________________________________  

0.05     13.94   14.06   5925   5966  

0.1  13.80   13.80 ----  6000   6000 ---- chosen fit  

0.2  13.75   13.57   6063   6067  

0.3  13.55   13.47   6150   6134  

0.4  13.45   13.42   6202   6200  

0.5  13.39   13.39 ----  6267   6267 ---- chosen fit  

___________________________________________________________________  

fig. 4.2. Time to attain 95 % residual modulus of elasticity, depending on temperature T (in 

degrees Kelvin)  of 6 species of each 7 specimen [14]. Similar perfect straight lines, 

according to eq.(3.2), apply for  the residual weight and residual modulus of rup-

ture.3.35 years at 100 
0 

C).  

 

enthalpy of 28,3 kcal/mol. Reported for boards is 29.5 kcal/mol.  

These results confirm the found values above of [14].  

Also mentioned in [10] is the occurrence of a second process in thick specimens (see 

fig. 4.3). This process with a higher activation energy than the first process occurs at lower 

temperatures, showing that there is a high internal stress. The same also was found in [2] 

(pg. 79) for relaxation at 40 
0
C of wet wood and for the compression strength ([2], pg. 51) 
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and for creep ([2], pg. 54) at room temperature. The same activation energy of about 41 

kcal/mol was also found by the DSC-method (see 3.3, lowest peak).  

Determining for aging, at common temperatures, are the damage processes due to me-

chanical loading and not the transformations due to the chemical forces. Based on the data 

of the temples, mentioned above, the 95% lifetime prediction thus should be based on 2  

 

fig. 4.3. Arrhenius plot of thermal degradation of yellow pine [10].  

 

dominating processes due to loading. One process of a strength decrease and one process 

of strength increase (by the increase of crystallinity due to loading). The high glassy value 

and the exact fit according to the Arrhenius law, even at higher temperatures (115 
0
 to 175  

 0
 C) of the modulus of elasticity, shows the main constituents of wood to be, still then, in 

the glassy state.  

 

 

5.    Transformations and decomposition of wood  

5.1. Introduction  

At a phase transformation, the free energies of 2 coexisting phases at the transformation 

temperature are the same, but when the first derivatives of their free energies are not the 

same, above and below the equilibrium temperature, there is a latent heat, or a discontinui-

ty of the enthalpy, the entropy and volume, what is known as a first order transformation. 

When these first derivatives are continuous, but the second derivatives of the free energies 

are different below and above the transformation temperature, showing then thus disconti-

nuities in the thermal expansion coefficient, the heat capacity (specific heat) and the com-

pressibility, the transformation is known as a second order transformation (e.g. a glass-

rubber transition). 

  

5.2. First order transformations  

Examples of first order transformations of wood-material are the changes as:  

melting, crystallization, depolymerization, degradation, dehydration and some types of 

plasticize and hardening. Transformations of wood components are mentioned e.g. in [7], 

but are based on highly degraded material. Wet hemicellulose is therefore supposed to sof-

ten at about 55 
0
C and lignin at 120 

0
C and there also are other structural changes in this 

temperature range. First, the structure of lignin is altered and then transverse shrinkage of 

wood-components begins (at 70 
0
C) and next the lignin starts loosing weight. As a transi-
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tion temperature of cellulose 210 
0
C is given. The changes in the range 120 to 210 

0
C are: 

initial decomposition of lignin and degradation of hemicellulose; hemicellulose starts to 

decrease and cellulose begins to increase (by the reaction with hemicellulose); bonded wa-

ter is freed (140 
0
C); Lignin “melts” and begins to re-harden; rapid weight loss of hemicel-

lulose and then of the lignin; cellulose dehydrates. Above 210 
0
C, cellulose crystallinity 

decreases and recovers; cellulose decomposition and weight loss starts above 280 
0
C (for-

mation of Carbohydrates); crystalline ordering changes (at about 225 
0
C) crystallites start 

to melt also above 280 
0
C; dissociation starts above 500 

0
C and dominates above 700 

0
C; 

hemicellulose completely degrades; wood is carbonized.  

The mentioned transformation temperatures have no general meaning because in [12] 

much higher temperatures are given (see fig. 5.1), indicating higher molecular weights of 

the sample material.  

Wood does not follow these transformations of the degraded components. As shown be-

fore, wood is not a heterogeneous composition and will not show transformations of the 

components, but is a homogeneous composite and shows one intermediate transition point 

(see e.g. fig. 5.1) of the co-polymer depending on the composition. It can be seen in fig. 

5.1, that the bend down of line 1 of wood, the onset of the transition peak of wood,  

(that is proportional to the slope of the line), is not influenced by the onset and transfor-

mation of the components. The composite wood shows a higher crystalline melting point 

than is mentioned for the components. The dynamic DTA and DSC tests, [12], did show  

the endothermic melting peak to be at about 380 
0
C, a higher crystalline melting point than  

 

1. wood  

2. holocellulose  

3. cellulose  (



  - cell.  C)  

4. hemicellulose (extracted with 10 % NaOH) 

5. lignin (dioxane lignin)  

 



 Akamatsu;     

   - - - - - - Buna.  

 

 

  

 

 

Temperature  (
0 

C) 

 

 

 

fig. 5.1. TG curve of wood and wood components [12].  

 

is mentioned for the components, occurring at the high temperatures where also depoly-

merization and degradation occurs (failure of the chain oxygen linkages). 

Decomposition thus is necessary to get “melting” and this “melting”-process can better be 

regarded as a process of endothermic decomposition.  

It can be concluded that first order like transformations of wood only occur at high temper-

atures and have a not noticeable influence on time dependent behavior at common temper-

atures (as also follows from 4).  
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5.3 Second order transformations  
 
Second order transformations, that may show at the transition temperature a “step in-

crease” of the thermal expansion coefficient, the heat capacity and the compressibility, 

should e.g. be detectable for wood by a fall down of the modulus of elasticity. For a real 

glass-rubber transition, the stiffness (or rigidity) diminishes more than 3 orders (and the 

strengths more than 2 orders). However wood, as highly oriented, cross-linked, filled and 

crystalline composite can be expected to show a leather transition and to remain elastic 

(potential-elastic, not rubber-elastic) and only may show a reduction of the stiffness of less 

than one order in the stiff direction.  

 

5.3.1. Change of the thermal expansion coefficient  

The thermal expansion coefficient 



  can only be measured for dry wood, because else 

temperature changes cause changes of m.c. and cause higher deformations than by thermal 

expansion. The measurements on dry wood of Schaffer, between 0 
0
 and 270 

0
 C, did not 

show a sudden increase of the thermal expansion coefficient. Dry wood thus does not show 

a transformation up to the highest temperatures of degradation.  

 

5.3.2. Change of the heat capacity  

The heat capacity of wood, or specific heat (as ratio of the capacity to the capacity of water 

at 15 
0
 C), is known e.g. between 0 

0
 and 110 

0
 C [9]. It is independent of the species and 

specific gravity. It slightly increases with temperature and the dependency of the moisture 

content follows the additive rule of the specific heats c of the water content and of dry 

wood content: 

cm =   



. cw + (1 - 



 )  



.c0 = 



  + (1 - 



 )  



.0.324 = 0.324 + 0.676  



.



  = (



 0 + 0.324)/(1 + 



 0) 

where 



  is the moisture content based on the wet weight and 



 0 on the oven-dry weight; 

c0 is the specific heat of dry wood and cw = 1, is the specific heat of water. There thus also 

is no indication of any “discontinuity” (or quick change) in this temperature range (nor due 

to water). The usually assumed glass-transition of wet wood around 50
0
 to 80

0
 C thus is not 

indicated. Around this temperature, a common second relaxation process may become no-

ticeable, after a long delay time, at sufficient high stresses, by the time-stress equivalence, 

(see fig. 4.3 and [2] pg. 79). The glass state, determining this mechanism, is confirmed by 

the perfect Arrhenius plot of the damping peaks (or loss modulus peaks) at thermodynami-

cally loading (comprising the whole moisture content range).  

For a glass transition, a WLF-type equation should apply instead of the Arrhenius equa-

tion. Wet wood thus also does not show a transformation (below 110 
0
C).  

 

5.3.3. Change of the strength and modulus of elasticity  

According to the constant temperature dependency of the modulus of elasticity, dry wood 

(m.c. = 0) does not show any transformation up to the highest temperatures where degrada-

tion occurs. The same follows from the constant temperature dependency of the strength 

for the ultimate load bearing bonds. The compression strength at 0 % m.c. is measured be-

tween – 180 
0
 to + 280 

0
 C to be linearly dependent on the temperature. This linear de-

crease with the temperature of the strength is due to the positive constant entropy term of 

the activation energy what is common for glassy behavior. The same applies for the bend-

ing strength, measured between – 180 
0
 and + 130 

0
 C, and for the tensile strength, meas-

ured between + 20 
0
 and 280 

0
 C. One investigation (of Schaffer), did show a kink in the 

straight lines for the modulus of elasticity, the compression- and the tensile strengths 

around + 200 
0
 C, showing the influence of damage by the initial quick m.c. change. The 
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common decrease of the strength with the moisture content is a property of the activation 

volume. This effect is recoverable, as for most moisture dependent properties (at sufficient 

low stresses).  

The moisture content has no influence on the tensile strength at low temperatures (- 180 
0
  

to ~ + 20 
0
 C). As discussed in [2] pg. 51, there is a change of the dominating  strength de-

termining process at – 8 
0
 C, where below the determining process shows an activation  

fig. 5.2. Compressive strength // [12] of wood in the whole temperature range  

             according to theory and measurement (see [2] pg. 52).  

 

volume that is not dependent on the m.c. for tension and follows λ0 ≈ λ1∙ωm∙T0 for compres-

sion, explaining the curved decrease of the compression strength at a m.c. above fiber satu-

ration (given e.g. between – 100 
0
 and + 20 

0 
C in fig. 4.5.3, and between 20 

0
 to 100 

0
 C in 

fig. 4.5.1 of [2]), and shows no “step” change of the strength or “sudden” change of the 

temperature dependency in this temperature range thus shows no transformation. The same 

follows  from the shear strength, measured for wet wood e.g. between 20 
0
 and 170 

0
 C, 

and from the strengths perpendicular to the grain measured up to 100 
0
 C. The modulus of 

elasticity also is measured, in the temperature range of - 150 to  + 280 
0
 C, to be linearly 

dependent on the temperature for dry wood (m.c. ~ 2 %).   

   

fig. 5.3. Compression strength and activation volume  

 

Because the modulus of elasticity is proportional to the activation energy (by the form of 

the energy barrier), the linear temperature dependence is caused  by the constant positive 

entropy term (see [2] pg. 33). This predicts a similar m.c. dependency as for the strength 
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(see 5.3.3 and [2]).  

Thus, the strength and modulus of elasticity don’t indicate, in common circumstances, a 

transformation of load bearing bonds in the whole temperature and moisture content ranges 

of un-degraded wood.  

 

5.3.4. Changing loading, moisture content and temperature  

Softening of wood is possible at high temperatures and moisture contents (m.c.) due to 

high loading. The influence of m.c. is known from manufacturing densified wood. Pressing 

wood of 26 % m.c. at 26 
0
 C is as easy as pressing wood of 6 % m.c. at 160 

0
 C. By the 

time-stress equivalence, the softening temperature of wood is also strongly reduced  by 

high loading.  

A type of a leather-like transformation of wet wood is possible by a cycling load or (see 

[2]) by a cycling m.c. change. This is not a real glass-transition that only depends on its 

transition temperature, but may occur at any temperature and is dependent on the loading 

level that should be above the long-term strength. The transformation is not possible for 

tension in grain direction and at low moisture contents, but is measured in compression 

(Y.M Ivanov) and in torsion (Becker and Noack) and the other loading cases [2].  

Repeated compressional loading of small clear compression specimens (1x1x2 cm
3
) at a 

stress level above the long-term strength did show, besides the visco-elastic strain, a strong 

increase of the elastic strain. Thus, a strong decrease of the modulus of elasticity. This 

elastic strain may become of higher order with respect to the initial strain, when pure cen-

tral loading of the specimen remains possible in the test. If this is no longer possible, in-

stantaneous compressional failure occurs. The applied stress is thus a fatigue load of the 

repeated central loading. The behavior is according to a damage equation or to a structural 

change equation like eq.(6.5.23) of [2], and there is a delay time and an exponential in-

crease of the elastic and viscoelastic strain. Visco-elastic strain is caused by side bond 

breaking and bond reformation in a shifted position. The mechano-sorptive effect is a spe-

cial form of this mechanism where there is a alternate shrinking and swelling with slip in 

adjacent layers by the moisture content changes, what is fully explained in [2] chapter 7 for 

all histories of high moisture content changes. At high stresses, there thus is an additional  

 

fig. 5.4. High elastic strain and mechanosorptive strain ([18]-left, [17]-right) 
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effect of high visco-elasticity and of diminished bond reformation causing the decrease of 

the modulus of elasticity due to damage by fatigue.  

An other way to obtain a high elastic strain is given in chapter 8 of [2]. Creep and relaxa-

tion compression tests on small clear specimens at a high stress level, with small changing 

moisture contents, did show, in the delay time before the high elastic state in compression, 

a strong increase of the activation volume and thus a much higher compressional creep and 

already a high elastic state for bending movement of the compression specimen. This 

shows that side bond breaking starts only in certain planes and changing moisture content 

tests should be done in combined bending and compression for parameter estimation.  

For wood, the high elastic state is the result of a strength mechanism, decreasing the side 

bonds and it is not a glass transformation, at a specific temperature, although the defor-

mation is partial recoverable. The real glass transition is discussed in B(2010), Section B.3. 

 

6. Conclusions  

Conclusions about phase transformations discussed in chapter 2, are given in 2.9. 

Based on the theory of molecular kinetics, a discussion and theoretical derivation and cor-

rection is given in 2 of the old qualitative linear rheological models. As a consequence, 

new theory in 2 is derived about: nucleation and heterogeneous nucleation (2.5), with the 

right “Tammann Hesse” (2.6), and other empirical nucleation equations (2.5); the general 

diffusion equation of transformations (2.3); the reaction order (2.4); the activation volume 

parameters (2.5); the power law (2.5); and the empirical power law rate equations (2.8).  

- Conclusions about transformations in wood, discussed in 3 to 5, are as follows: 

- The activation enthalpy, found by thermogravimetry, is only indicative because of: the 

gas lost; the combustion of these gasses, determining also the reaction within the speci-

men; the successive and simultaneous reactions, giving overlapping peaks; the assumed 

wrong equation of only one process and wrong reaction order (different from order one); 

the structural transitions in wood that only are possible after the previous, or at the same 

time acting decomposition reactions; the strong influence of the molecular weight and di-

mensions of the sample and of the heating rate; the neglect of the strong influence or the 

extend of the reaction y on the enthalpy H, so that H – cy is measured and reported to be 

H; the many influences causing peaks that are characteristic of the test and sample holder 

assembly and laboratory and not of the sample.  

A thermo-mechanical verification of the found enthalpies thus is always necessary.  

- Thermo-gravimetric and differential scanning calorimetric  measurements of wood in 

nitrogen show that there is a peak, at about 380 
0 

C, of endothermic melting and degrada-

tion of the crystallites and at the same time a peak of exothermic decomposition and de-

polymerization that interacts and overlaps the melting. The apparent activation enthalpies 

of both peaks are 43 to 49 kcal/mol, according to the DSC-method. From the TG-method, 

lower values from 23 to 30 kcal/mol for the equivalent peaks are found, showing, that there 

is a process of weight loss and a process of bond breaking without weight loss.  

- Isothermal TG measurements just below 380 
0 

C, did show that two processes are acting, 

and by the changing driving force, due to the extent of the reaction, of one of the process-

es, an apparent changing total activation energy between 35.4 and 56.3 kcal/mol was 

found, see table 3.1. The lower value agrees with the value found at still lower tempera-

tures of the accelerated aging process of 4.2.  The lower enthalpy values of 23 to 30 

kcal/mol, of the dynamic TG method with respect to 35 to 56 kcal/mol of the isothermal 

TG method is also due to a too high heating rate with respect to the long delay time of the 

processes. 

- The found enthalpy values from thermogravimetry agree with those obtained by thermo-

mechanical methods of creep and strength as given in [2].  
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- It can be concluded that first order transformations of wood only occur at high tempera-

tures and have a not noticeable influence on time dependent behavior at common tempera-

tures as also follows from chapter 4.  

- The powder collapse tests show the important influence of the molecular weight and 

moisture content on the softening temperature. Because of the low molecular weight of the 

degraded sample material and the other type of bonds, the behavior is not comparable with 

that of wood.  

- It is clearly shown that wood is not a heterogeneous composition but a co-polymer, (a 

homogeneous composite), and thus will not show separate transition peaks of the different 

components, but one intermediate transition point. Thus, cellulose-, hemicellulose- and 

lignin- peaks, etc. don’t exist in wood.  

- Thus, peaks due to previous testing; water movement; temperature history and damage 

etc.; should not be associated with transitions of components, as is done.  

- Dielectric dispersion gives no information on the mechanical behavior of wood because 

wood is dielectric neutral. The dielectric measurements only give information on the spe-

cial loose water-structures at the free surfaces of pores etc. in wood, as also follows from 

the low activation energies.  

- The internal friction thus does not show the multi-peaked dielectric behavior of the “mul-

ti-transitions model”, but the real, right value of internal friction, following from mechani-

cal testing, shows a constant loss tangent, tan(



 ), and constant logarithmic decrement 



 

(  



. tan(



)), at common temperatures, in the whole, technical frequency range of about 

10
 - 5

 to 10
 + 4

, (depending on the loading level). This constant value of tan(



 ) is explained 

by the theory (see [2], pg. 96 to 100), as a consequence of a property of the activation vol-

ume. The same property also explains the time-stress equivalence.  

- Measured aging on wood of temples, loaded between 400 to 1300 years, did show a neg-

ligible decrease of strength and stiffness during 1300 years, despite of loading and climate 

changes. Accelerated “aging” tests at high temperatures did show a still smaller decrease, 

because there was no mechanical loading. Also for this structural change process, the time-

stress equivalence applies.  

- For the structural use of wood, transformations play no role. At common temperatures, 

loading levels and moisture contents there is no action of any transformation and there thus 

also is no aging effect or change of crystallinity, chemical changes, or change of concen-

tration of flow units (determining creep). There also is no indication of second order trans-

formations because there is no sudden change on a temperature plot of: the thermal expan-

sion coefficient; the heat capacity; the strength and the modulus of elasticity. The only pro-

cess that matters is the damage process at high loading. Stress is the only driving force 

then, because the chemical driving forces are negligible.   

- Softening of wood is possible at higher temperatures and high moisture contents, by high 

changing loading or by changing moisture content at sufficient high loading. Preliminary 

tests and parameter estimations are given in [2]. More investigations are necessary to ob-

tain the parameters of this special mechano-sorptive effect. Because unprotected wood in 

buildings undergoes the maximal moisture content change during the year, the mechano-

sorptive effect, together with the softening effect at higher loading and by long term cy-

cling, is determining for creep and safety and is the only effect that needs to be investigat-

ed further.  

- Conclusions about the new rubber theory are given in appendix I - 4.  

- Conclusions about new theory of glass transition and annealing are given in Section ab.3.   

- All aspects of strength and time dependent behavior of materials are fully explained by 

the acting physical and chemical processes, thus by statistical mechanics and reaction ki-

netics. The correlation of the theory with the measurements is about one, for the processes 
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in each specimen (each given structure). It thus is a deception to use the old qualitative 

linear rheological model of liquids and soft solids, which even do not apply for these soft 

materials and only locally and meaninglessly may fit some data, and thus is not able to 

predict behavior.  
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1. Introduction  

Although linear viscoelasticity does not exist for structural materials, there is, due to the 

standard computer applications, still a fall back to models based on linear behavior and on 

linear spectra of relaxation times based on the flexible chain theory. These models are ex-

trapolated to the totally different, non-linear cases of rubbers, glasses and crystalline mate-

rials and even are supposed to be able to describe transformations. Even the free chain 

model of Zimm [16] is proposed as such for the glassy and crystalline material wood, alt-

hough it only may apply for flow of very dilute solutions. Wood remains glassy and does 

not show a real glass transition or real melting below its high temperatures of decomposi-

tion. A real glass transition temperature of wood thus does not exist. For wood, the process 

of side bond reduction, causing softening, is only possible at combined high temperatures, 

high moisture contents, and high loading, close to the level of damage and decomposition.  

That spectra of relaxation times cannot exist is shown before in publications  and at 

COST-workshops. Besides the theoretical impossibility of such an existence, also the sim-

ple test of e.g. zero relaxation, after a relaxation test, shows that only one non-linear de-

formation kinetics process is acting within a very wide time or frequency range. Zero re-

laxation occurs when the applied strain and stress are lowered to such a level that the inter-

nal stress on the mobile sites is zero. This proves the impossibility of the existence of a 

spectrum [2] that predicts that there always is relaxation at any strain that is applied. This 
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further shows that none of the other methods (chain models, power laws, general functions, 

etc.), based, or implicitly based, on the existence of spectra, is able to explain or predict 

any behavior and thus is nothing more than an arbitrary, only partial applicable fitting pro-

cedure.  

For valid conclusions on wood behavior, it is necessary to show when, and for what 

material, there is any possibility of assumptions of linearity or chain-like behavior and thus 

any applicability of the phenomenological rubber theory. This is done here by a simple 

derivation of this "theory" to show its basic suppositions and the consequences. Because 

this analysis leads to a rejection of this "theory", the real explanation of rubber behavior by 

the exact physical theory, (statistical mechanics and limit analysis of equilibrium theory [2] 

of deformation kinetics), also has to be discussed. This general theory is shown, in many 

publications, to explain fully all aspects of time dependent behavior without the need of the 

invalid extrapolation of the free chain model of a very dilute solution to dense rubbers and 

without the need of an incorrect and inconsistent phenomenological model of increase of 

free volume as cause of` glass transition [3], [2], etc.  

From the given derivations it is shown that the explanation of rubber behavior by de-

formation kinetics removes the existing serious contradictions of the, therefore rejectable, 

chain models. Of course, these models, based on the behavior of isolated flexible mole-

cules, only were supposed to apply for liquid-like behavior in the terminal zone of very 

dilute uncross linked polymers and can not apply for undiluted material in the glass-, or in 

the plateau zone, nor for cross-linked networks and thus certainly not for structural materi-

als like wood.  

 

2. Discussion of the classical rubber theory  

2.1. Basis hypothesis of the theory (Rouse; Zimm;  etc.) 

The “rubber” theory is based on the Brownian motion of isolated flexible chains at higher 

temperatures above glass transition, thus deals with very dilute solutions where a separated 

long molecule is surrounded by solvent. The driving force of these Brownian motions is 

the thermal energy that is regarded to be opposed by viscous forces of the hydrodynamic 

resistance of the solvent. At dynamic loading, the force in phase of the Brownian dis-

placements causes energy storage and in phase with the velocity causes energy dissipation. 

At very high frequencies (many orders above the measuring frequency of the rubber state), 

there will mainly be bond stretching or elastic behavior (glassy rigidity), while for low fre-

quencies there is time for chain movement within a period showing the mentioned strain 

and velocity in phase with the stress (in rubber behavior).  

The theory however does not deal with the behavior at higher frequencies and short-

range relationships and the prediction of this theory of infinite rigidity and infinite loss at 

infinite high frequencies is invalid. The theory is limited to the low frequency chain statis-

tics that any point on the chain backbone separated by 50 or more chain atoms will be re-

lated to each other in space according to a Gaussian distribution of vectors (distance ac-

cording to a random walk). The root-mean-square distance, s, between 2 points separated 

by q monomeric units (q > 50 chain atoms) is:  

  



s  a q , 

where "a" is about the monomer distance. Distortion of these 2 distance points by a shear 

stress in the solvent will be opposed by the restoring force due to the diffusion back to this 

configuration by the Brownian motion resulting to a spring constant of:   3kT/qa
2
,  (the 

"entropy spring" of a chain segment in liquids and soft solids), where 3kT is the mean 

thermal energy (T = absolute temperature; k = Boltzmann’s constant). By Rouse it is as-
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sumed, as model, that the friction along the chain can be concentrated on these distance 

points (called segment junctions) in order that only the movements of these points have to 

be regarded. It thus is assumed that there is no hydrodynamic interaction for smaller  

motions between the junctions (limiting the model to low frequencies). The motions of all  

fig. 2.1. characteristic modes of motion of a flexible chain molecule  
 

segment junctions can be expanded into modes (like a vibrating string) and each mode cor-

responds to a discrete contribution to the relaxation spectrum H, from which all experi-

mental visco-elastic functions can be derived, leading, according to Rouse, to:  

  



H  mkT p
p 1

N' N/ 5 

                   (1) 

predicting a line spectrum, where 



  is a relaxation time; N is the number of junctions of 

each molecule of q monomers, and "m" is the number of polymer molecules per cc, or, 

with 



 = polymer density; M = molecular weight; N0 = Avogadro’s number: m = 



N0/M.  

To keep the series in eq.(1) convergent, p must be smaller than about p < N/5.  

Then, using this bound, the term: sin
2
(p



 /2(N + 1))  in the Rouse model can be approxi-

mated by: sin
2
(p



 /2(N + 1))  



 (p



 /2N)
2
  and  

  



p  becomes:  

  



p  a
2
q

2
N

2
0 / 6

2
p

2
kT                   (2) 

where,   



0  is the friction coefficient per monomer. Thus per junction the friction is q  



0  

(where the friction is assumed to be concentrated on the junctions by the Rouse model). 

The magnitudes of "q", "a" and "N" need not to be known. However: Nq = Z,  

the degree of polymerization of the polymer, what is known and q (> ~ 50) determines the 

high-frequency limit of application of the random walk statistics of the model.  

Because the influence of the short relaxation times is ignored in the model, the applicabil-

ity and verification of the theory only is possible for behavior after longer times (or at low-

er frequencies).  

 

2.2. Relaxation spectra  

Linear visco-elastic behavior always can be described by mechanical models involving 

Hookean springs and Newtonian dashpots. For a single linear visco-elastic Maxwell ele-

ment the shear rigidity is: 

 G(t) = Giexp(-t/  



 i)                    (3)  

giving for n parallel elements:  

  



G t  G i exp  t / i 
i1

n

                      (4) 

Increasing the number without limit, a continuous spectrum results with the infinitesimal 

contribution Fdt or Hd(ln



 ) with H = F



  on the ln(



 ) scale, giving:  

  



G(t ) Ge  H.exp t /  .d ln( ) 




                     (5)  

where Ge = 0, for this case of uncross-linked polymers.  

For dynamic loading the complex stress-strain ratio: G* = G’ + iG’’ gives for:  
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

G'()  Gi
2
i

2

i1

n

 / (1
2
i

2
)                   (6) 

and for G'' :  

  



G''()  Gi i / (1
2
i

2
)

i1

n

                  (7) 

The dissipative effects of alternating stress also can be described by the ratio of stress in 

phase with the strain rate   



d(t) / dt  i0
.exp( it) , divided by the strain:  

  



(t)  0
.exp( it ) or:   



*G */ i ' i' ' , where   



' G''/  and   



' ' G'/ .   

Because   



 i  in eq.(3), (4), (6) and (7) is:   



i  i / G i ,  



’ may approach the steady- state 

flow viscosity 



 because according to eq.(7): 
  



' G''/ 
0

 G ii  i    

  



'() i / (1
2
i

2
)

i1

n

                    (8) 

This of course only applies for polymers showing a steady-state flow viscosity.  

In the same way as done for G(t) is for an infinite Maxwell model:  

  



G'  Ge  H
2


2
/ (1

2


2
) .d ln() 





                 (9) 

  



G''  Hw  / (1
2


2
) 





 .d ln()                 (10)  

  



'  H / (1
2


2
) .d ln( ) 





               (11)  

The steady-flow viscosity for an uncross-linked polymer follows from this equation by: 



  

= 0  or:  

  



 H.d ln() 




                   (12)  

Substitution of eq.(1) in (12) and using eq.(2) gives:  

  



p  6( s)/ (
2
p

2
mkT )                  (13)  

where 



 is the total viscosity and 



s is the viscosity of the solvent and because m is 

known from the molecular weight, time dependent properties are known from easily meas-

urable quantities.  

 

2.3. Relaxation spectrum of Rouse  

Inserting eq.(1) in eq.(5), (6) and (8) gives:  

  



G(t ) mkT exp( t / p )
p 1

N/ 5

                 (14)  

  



G'()  mkT . 
2
p

2

p 1

N/ 5

 / (1
2
p

2
)                 (15)  

  



'() mkT . p
p 1

N/ 5

 / (1
2
p

2
)                  (16)  

For low frequencies,   



()
2
 << 1, wherefore the theory applies, eq.(15) becomes:  

2 2
p 1G'( ) / mkT. mkTc                  (15’)  

and eq.(16):  

p 2G''( ) / ' mkT. mkTc                 (16’)  

giving finite values of c1 and c2 by the convergent series, e.g. by using eq.(2), what is pos-

sible by the sufficient small upper value of p < N/5.  

From eq.(15’) and eq.(16’) follows in this region:  
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         Log(G’) = C1 +   



2.log                (15’’)    

and:   Log(G’’) = C2 +   



log                (16’’)  

and the derivation shows that always, for all uncross-linked polymers, the slope of the log-

arithmic plot of G’ is 2 and is 1 for the loss modulus G’’.  

As can be seen in fig. 2.6.1 and 2.6.2, this never applies. The reason is that converging of 

the series only may apply at a steep descent, thus in the terminal zone for uncross-linked 

polymers by the cut off to N/5 used in 
  



p  and by the limiting longest relaxation time due to 

the limiting value of η’.  

The limiting forms at moderately short times or higher frequencies depend on the model. 

According to eq.(2), 
  



p  has, according to Rouse, the form of: 
  



p  = c3/p
2
,  giving for 

eq.(15), with x = p/  



c3 :   

   4 2 2 4
3 3 4

b

G '( ) mkT 1/(1 p / c ) dp mkT c . 1/(1 x ) dx mkTc ,



              (15’’’) 

leading to a slope of 1/2 at a double log-plot (see fig. 2.3).  

In general, with the arbitrary power law p 3c / p  , is found in the same way: 

1/
4G' mkTc ( )   .  

This gives with 



  = 1.5 the Zimm value of the slope, (see 2.4).  

Except for the 3 longest relaxation times of the line spectrum eq.(1), being too far apart, 

the other contributions to the spectrum are closely enough spaced to approximate this as a 

continuous spectrum leading to:  

  



H  (aqNm / 2).(0 kT)
1/ 2.

1/ 2
                  (17)  

or, in terms of steady-flow viscosity:  

   
1/2 1/2

s
. .H 6 / 2 mkT( )                    (18)  

where N, as too high value, is inserted as upper value of p in stead of N/5. This result thus 

is not right and because of the limitation of N/5 and the applicability for 
  



  p 3 , (corre-

sponding to H > 1.5mkT), eq.(17) and (18) only may apply over about 3 decades of time 

scale (or 1.5 decades of H-values), as confirmed by the measurements, what is far too less 

for an explanation of the total behavior.  

 

2.4. Hydrodynamic interaction, or extension of Zimm  

Zimm introduced hydrodynamic interaction between the moving sub-molecules based on 

the calculation of steady-flow viscosity of dilute solutions. This leads to a different expres-

sion for 
  



p  than given by eq.(1), that however can be written analogous to eq.(13):  

  



p  6( s)/ (
2
p

2
mkT )                (19)  

where 
  



p  are numeric values whose first few values (p = 1, 2, 3, 4) are:  

1.2, 2.1, 2.9, 3.67, (in stead of the 1, 2, 3, 4 -values in the Rouse equation) leading to 

somewhat smaller values by eq.(19) than given by eq.(13) and leading to a continuous 

spectrum of:  

  



H  (a
2
qNm / 5).(kT)

1/ 3.s

2/ 3 .
2/ 3

                 (20)  

showing a slope of – 2/3 on logarithmic scales.  

Alternatively, eq.(19) can be given, comparable to eq.(13), like:  

  



p  0.7.6.( s)/ (
2
p

mkT )               (19‘)   

where 



  1.6  for the first 4 terms, descending to 



   1.5 for high values of p.  

Although the Zimm theory should provide a better calculation (at high molecular weights) 



 52 

of the intrinsic viscosity (= the limiting value of the viscosity 



 when the polymer concen-

tration approaches zero), visco-elastic data of e.g. dilute solutions of polystyrene etc., in 

the range and conditions where the theory applies (e.g. in the terminal zone), don’t show a 

behavior according to the Zimm theory but do show a behavior close to the Rouse eq.(18) 

despite the neglect of hydrodynamic interaction and internal viscosity (= intramolecular 

steric effects) in this Rouse equation. The explanation of this apparent contradiction is giv-

en by the deformation kinetics approach that is able to describe the whole behavior pre-

cisely.  As will be shown in 3.3, the determining deformation kinetics equation of the vis-

co-elastic behavior at longer times can be expanded into a row which is identical to the 

row of the Rouse equation. Thus, the Rouse line spectrum represents one special non-linear 

process. There thus is no restriction of an application to only dilute solutions, as is the ba-

sis of the chain models. This single process explains why at zero relaxation, after a relaxa-

tion test, the spectrum is not present. Because the “spectrum" only exists as expanded 

terms of one process, it does not exist when this single process is not acting (as in the zero 

relaxation test, see 3.4).  

Thus diffusion of activated segments is the basic mechanism that explains the behavior 

and the chain model should be rejected because it strictly only should apply for separated 

chains in dilute solutions, according to the assumed basic mechanism, while it shows a 

better experimental agreement for undiluted polymers outside the basic assumptions of this 

chain model.  

The explanation of the Rouse equation as an expansion of one non-linear deformation ki-

netics process also explains why this line spectrum (that seems physical improbable, but 

exists as terms of the row expansion of the exact equation) gives better results than a con-

tinuous spectrum (that does not exist). Further, it explains why the theory also can be ap-

plied to undiluted polymers, using only one friction coefficient for all types of coordinated 

motions. These motions, represented by the separate terms, are in fact the expanded terms 

of one process with one relaxation time, thus one friction coefficient.  

In the same way, the slip of the entanglement couplings, showing a second bond breaking 

deformation kinetics process, can be represented by a group of modes (= expanded terms) 

with another friction coefficient as is applied in the chain models by using a second ladder 

network behind the first.  

The experimental determination of H for undiluted polymers shows a slope between  

– 1/2 to over – 2/3. However, the slope is mostly closer to – 1/2 in the time scale where the 

theory should be applicable (the terminal zone at steady-flow-viscosity) and thus is not  

– 2/3 as predicted by Zimm. The steeper slope, occurring at shorter times, certainly can not 

be explained by the Zimm theory because   



s , the solvent viscosity in a dilute solution, 

now, by the absence of solvent, would presumably represent an effective local viscosity far 

smaller than the real macroscopic viscosity.  

In the range where the slope of the curve of log(G ꞌ) against log(



 ) is 2/3, applies: 

log(G ꞌ ) = log(G1ꞌ) + 0.67log(



 /



 1).   

Because   



G'' (/ 2).dG'/d (log()), and therefore:  

d(log(G’))/d(log(



 ))   



 (2/ ) tan() is:   



(2 / )tan()   2/3, or   



tan()  1 and  

G’ 



 G’’.   

This last relation may apply near the midpoint of glass-transition and explains why the 

slope here is about 2/3 and not at the terminal zone as predicted by the Zimm-model. The 

Zimm model further only could be right for very dilute solutions approaching the limiting 

value of zero concentration. The different measured slopes show in reality that still an oth-

er additional process is acting. This again shows that an explanation or a description cannot 

follow from chain models or arbitrarily power law models.  
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2.5. Ladder networks  

In dilute solutions, polymer molecules can be represented by springs (with spring constant 

3kT/(qa
2
)) moving in a viscous medium (with friction coefficient   



0 ). This model is analo-

gous to the ladder network in electrical network theory. When the lumped springs and 

dashpots are uniformly distributed along the length, the mechanical model becomes exact-

ly analogous to an electrical model of an inductive transmission line, for which the  

 

Fig. 2.5.1. Ladder networks of Blizard (above) and Marvin (below).  

 

frequency dependence of the impedance (= complex relaxation modulus G*) is well known 

giving for an undiluted polymer with molecular weight M:  

  



G* G' iG'' (C1 / M) (iC2M
2
)

1/ 2
coth( iC2M

2
)

1/ 2
 1            (21)  

At high frequencies, eq.(21) gives the limiting value:  

  



G'G'' C1 (C2 / 2)
1/ 2

                                                           (22)  

identical with the Rouse theory and at low frequencies the limiting values are:  

  



G'C1C2

2
M

3


2
/ 45                 (23)  

  



G''C1C2 M / 3                   (24)  

also according to the Rouse theory, when:   



C1 RT/ 2  and   



C2  a
2
0 / (6M0

2
kT), where 



 = polymer density, R = gas constant, M0 = M/Z  = monomeric molecular weight.  

Using additional springs below the dashpots (see fig. 2.5.1), Marvin obtained a slightly 

different G* leading to the same eq.(22) at high frequencies and slightly different values at 

low frequencies. However there is an abrupt change from eq.(22) to the properties of a sin-

gle Maxwell element as limiting value of the glass value of G. The spectrum thus is a tri-

angle, giving only a qualitative description of the behavior neglecting also the flat plateau 

at small times. As to be expected for this liquid-like behavior, there hardly is an influence 

of side group packing which differs greatly between tested ethyl and dodecyl ester.  

A thorough study in the past of ladder networks with both lumped and distributed pa-

rameters, has shown that a continuous dynamic modulus function as eq.(21) corresponds to 

a discontinuous relaxation spectrum with discrete lines, so that the series expressions 

eq.(6) to (8) or (14) to (16) are equivalent to eq.(21). This confirms again the explanation 

of the behavior according to the Rouse model being a row expansion of the deformation 

kinetics equation of one process.  

 

2.6. Modified spectra for cross-linked networks  

It should be emphasized that the theory for isolated flexible molecules is not supposed to 

apply for viscoelastic behavior in the glassy, or in the plateau zones, nor for cross-linked 

networks and is not able to describe this behavior. This of course is evident because short 

chain units cannot be randomly coiled and have the Gaussian distribution of configurations 
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and thus cannot behave as entropy springs. This also follows from fig. 2.6.1, where the 

storage modulus is given of all typical polymeric systems, above glass transition (except 

curve IV), with the uncross-linked polymers on the left and the cross-linked on the right. 

The glassy state, curve IV and the cross-linked polymers, curve V, VI and VII, and even 

the uncross-linked polymers curve I to III, don’t show the steep slope 2 as predicted by the 

free chain model, eq.(15ꞌꞌ).  

Thus, chain models don’t apply for solids and thus certainly not for structural materials, 

also not above glass transition.  

The storage modulus Gꞌ(



 ) is about the mirror image of the relaxation modulus G(t) with 

respect to the modulus axis G ꞌ(



 ) = G ꞌ(1/t)  



 G(t). Thus the behavior after long times is 

the same as at low frequencies. In the same way, a first impression of the creep compliance 

J(t) follows from a mirror image reflected in the time axis: J(t) 



 1/G(t). For the same rea-

son that G ꞌ(



 ) resembles G(t) plotted backwards, J’(



 ) resembles J(t) reflected in the 

compliance axis. For uncross-linked polymers, this applies for the recoverable part: 

  



J'(1/ t )  J(t) t / .    

 

Fig. 2.6.1. Storage modulus Gꞌ of all typical polymeric systems [8]. The arbi- 

             trary horizontal shifts A of: I to VII are: -3; -1; 0; -7; 0; 0; 2. The de 

             formation is shear except for curves V and VII, which are extension.  
 

The types of polymers of fig. 2.6.1 to 2.6.3 are:  

I:    a low-molecular-weight polyisobutylene, the only one type that approaches the best the 

limiting behavior of quasi-linear visco-elasticity.  

II:  and III: uncross-linked polymers of high molecular weight (long chains) that by its 

lengths will have a probability of local side bonding connecting the chains, what is 

called entanglement coupling in the classical model. Curves II and III show the glass 

transition in 2 stages by the 2 types of bonds. The first stage of descent of the curve, at 

high frequencies or short times, is regarded to show motion of chain segments between 

the entanglement coupling points. The nearly horizontal plateau zone, is regarded as an 

"equilibrium" modulus that is reached, showing the rubber like elasticity, as also is 

seen for the lightly cross-linked networks V and VI at low frequencies or long times. 

The bond breaking of the bonds between the chains, is regarded in the classical model 

as slipping of the coupling points showing the second stage of a steep descent of the 

curve, representing the terminal zone. Type III (poly-n-octyl methacrylate) has large 

side groups, decreasing the modulus.  

At long times or low frequencies and at equilibrium in the plateau zone G or Gꞌ should 
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vanish according to the classical theory because of the resumption of random average 

configurations by the macromolecular coils in the deformed state. This is not the case 

and also Gꞌꞌ in fig. 2.6.2 , (similar to H of fig. 2.6.3), shows still finite values. Further, 

at high frequencies, the perfect elastic behavior is predicted by the classical theory and 

Gꞌꞌ should become zero. It is seen in fig. 2.6.2 that this is not the case, but that on the 

contrary, G''  increases enormously and becomes many orders higher at high frequen-

cies showing the same values as for crystalline material VII or amorphous material in 

the glass state IV (showing thus the same time dependent processes).  

IV: The glassy state of an amorphous polymer with high molecular weight, (the only one 

here below glass transition) that only shows local readjustments as is explained by de-

formation kinetics [2]. These processes explain the time dependent behavior as creep of 

structural materials (like wood, concrete, steel, etc.).  

V:  A lightly vulcanized rubber providing a lightly cross-linked network.  

VI: A soft gel, that, as V, is lightly cross-linked but now by crystallites as links. At long 

times, or low frequencies, the lightly cross-linked networks V and VI, are regarded to 

approach an "equilibrium" rubber-like shear modulus. However fig. 2.6.2 shows that 

this is not true because Gꞌꞌ and H of V and VI don’t vanish. Thus the plateau zone rep-

resents a common process  of he same type as found in the glassy and crystalline pol-

ymers IV and VII, what is explained by deformation kinetics [2].  

VII: A highly crystalline polymer with a matrix of crystallites (that shows no change of 

crystallinity). As mentioned before, the rather flat spectra H of IV, VII and V and VI at 

long times (see fig. 2.6.3) can not be explained by linear spectra but are explained by 

one non-linear deformation kinetics process. It is easy to show by a test that spectra  do 

not really exist (see 3.4) but that the spectral lines are the expanded terms of one non-

linear process (see 3.3).  

The plots of H in fig. 2.6.3 show similar shapes to those of Gꞌꞌ in fig. 2.6.2, reflected in the 

modulus axis. (In the same way the retardation spectrum L resembles the loss compliance 

Jꞌꞌ reflected in the compliance axis).  

 

 fig. 2.6.2. Loss modulus Gꞌꞌ of the 7 polymers described above [8] 
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  fig. 2.6.3. The relaxation spectrum "H" of the 7 polymers described above 

 

Several modifications of the series of H (for cross-linked networks) by several characteris-

tic modes of several types of linked strands (using bond rotations instead of the simplified 

model of entropy springs) and networks (or series of networks) only give qualitative de-

scriptions of the behavior at transition, e.g. with square root (Rouse; Bueche), linear, and 

square dependence of J’’ on t, all roughly in accordance with the applied range of meas-

urements. However, real fits of the whole behavior are not possible by the chain and power 

law models. This is evident because the very long relaxation times can not be explained by 

extrapolation of the model to (impossible) motions of large groups of strands of large di-

mensions, while physics, shows, [2], that the behavior is explained by the very local 

movement of small flow units (segmental jumps, or dislocations movements in crystals, 

etc.).  

 

 

3. Explanation of rubber behavior by deformation kinetics  

 

3.1. Introduction  

The properties of liquid-like materials usually are determined at flow of the material. For 

cross-linked polymers that are not able to flow, creep- or relaxation tests can be done for a 

first parameter estimation. The deformation kinetics equations, explaining these processes, 

are given in [2]. By a simple test of zero relaxation after a relaxation test (see 3.4), it can 

be shown that only one non-linear process is acting in a wide time interval of many dec-

ades and thus a spectrum of relaxation times does not exist.  

Thus none of the used other methods (as free chain models, power laws, general functions, 

etc.), that are based, or implicitly based, on the existence of linear spectra, is able to ex-

plain this behavior. Thus the apparent relaxation spectrum, (that is nothing more than the 

derivative of the measured G or G’ curve), is explained by one non-linear process in [2]. It 

will be shown in 3.3, that the Rouse spectrum is identical to a row-expansion of such a 

non-linear molecular kinetics process, that is not a structural change process or a transfor-

mation.  

 

3.2. Stress relaxation  

According to [2], the constitutive equation for this case is identical to that of a system of 

parallel non-linear Maxwell elements. Mostly the relaxation times of the elements are far 

apart and all Maxwell elements act like springs, with spring constant K2, and only one is 

noticeable as such during the test providing a non-linear three-element model with one 

Maxwell element and a parallel spring [2] (see fig. 3.4) .  
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The total stress is   



  v 2, where   



2 K2  is the stress on the free spring and   



v  is 

the stress on the Maxwell element:   



v K1(  v ), thus    



2 K2  v . Above glass 

transition, all Maxwell elements may flow and the stress after relaxation after long time 

approaches its minimum value. The strain rate   of the viscous strain   



v  of one process (= 

one Maxwell element given in Fig. 3.4) follows:  

1 v 0     , because for relaxation   = 0 or:  

v
v

1

. .D sinh( ) 0
K


                      (25)  

or: 

v 1 v
.D sinh( K ( ))                     (26)  

or: 1 v 1 v 1 v
v

DK ( ) 3 K ( ) 5 K ( ).d e e e ..... dt
2

        
     

 
          (27)  

 giving as solution: 

  



e
 v

K1

 + 
  



e
3 v

3K1

 + 
  



e
5 v

5K1

 + …  - 
  



e
 v0

K1

 - 
  



e
3 v0

3K1

 - 
  



e
5 v0

5K1

 - … =
  



Dt

2
      (28)  

As will be shown below, eq.(28) may be interpreted as terms of a spectrum that is a similar 

line spectrum as the Rouse theory, explaining the better results in rubber theory by using 

this line spectrum than by using a continuous spectrum. (Although a line spectrum is phys-

ically impossible, it does exist as expanded terms of the physical right equation).  

Eq.(28) can be written: 

v v0

1 1

1 1 Dt
.arccoth(e ) .arccoth(e )

K K 2

 
 

 
                    (29)  

or:    v0
v 1

D
ln tanh t K arctanh e

2

           
   

  

or:    

  



v  ln tanh
D

2
tK1  e

 v0


















              (30) 

or at the start of the process when tanh(x) 



 x:  

  



v  ln
D

2
tK1  e

 v0








 ln 1

D

2
tK1.e

 v0








  v0             (31) 

or:   
  



v  v0 ln 1
t

t'









          

At longer times eq.(31) becomes:  

  



v v0  ln( t / t')              (or:    



 0  ln( t / t') )              (32)  

where t’ is the delay time (t’   



 2 / (De
 v0K1))  showing the linear line on log-time 

scale. Further an extension of this straight line to   



v  = 0, shows that the intersect with this 

time axis gives t’’= 2/(D  



K1),  being the relaxation time based on the straight part of the 

line. Thus: ln(t’’/t’) =   



 v0 .   

For very long times eq.(30) becomes:  

  



v  ln tanh
D

2
K1t



















 

giving the curve of   



v  approaching   



v  = 0, or:   



v v    (in this case of a symmet-

rical energy barrier of activation).  
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3.3. Explanation of the Rouse spectrum  

It is easy to show by the simple test of zero relaxation (see [2] or 3.4) that a spectrum as 

physical reality does not exist. However, the really acting single non-linear process can be 

expanded mathematically into a row, showing in some tests the same behavior as if there is 

a line spectrum (i.e. the expanded terms).  

As given before, the integration of eq.(26) gives:  

  



e
 v

K1

 + 
  



e
3 v

3K1

 + 
  



e
5 v

5K1

 + …  - 
  



e
 v0

K1

 - 
  



e
3 v0

3K1

 - 
  



e
5 v0

5K1

 - … = 
  



D

2
(t  t0 )  

This equation shows that the time   



te  to reach the end state of total relaxation, or  

  



v  = 0,  is:  

  



te 
2

nD
1

1

3


1

5


1

7
 .....









   

where n =   



K1. Thus, the time to reach equilibrium in the end state is infinite. The Rouse 

equation for the relaxation time also shows an infinite sum of the row of relaxation times 

and cut offs of this row are used to have a converging row.  

Because the first term of the Rouse row provides the main contribution to the spectrum and 

the viscosity, eq.(28) should be comparable with the Rouse equation at t = tr, the relaxation 

time of Rouse. With t0 



 0 and thus omitting the small terms (with   



v0 ) this eq.(28) be-

comes:  

  



e
 v

K1


e
3 v

3K1


e
5 v

5K1

 ...








.

2

D
 t r  p

p1

N/ 5

 with p 
c3

p2
  (see at eq.(15ꞌꞌꞌ)) 

Thus: 

  



e
 v

K1

. 1
e
2 v

3


e
4 v

5
 ...











c3D

2
1

1

22


1

32
 ...









           (38) 

giving:   



c3  2/ (DK1e
 v ) t ''/ e

0.14
 t''/ 1.15  or the longest relaxation time of Rouse 

is proportional and of the same order of the relaxation time tꞌꞌof the falling curve as can be 

expected. Further is:  

  



1
e
2 v

3


e
4 v

5
 ...  1

1

22


1

32
 ...  

or in general: 
  



 v  ln{p
2

/ (2p  1)} / (2p  2),  for every: p = 2, 3, 4, 5, ...,  giving: 

 

 
p        2  3    4        5 

 

  



 v  ~ 0.14      ~ 0.14      ~ 0.14      ~0.13    

 
or   



 v



 0.14  because the first few terms determine nearly the total behavior.  

The value of   



v  quickly decreases at a small change of the power of the row. For in-

stance for a 5% difference, when the power is 1.9 in stead of 2,   



 v



 0.11,  

 
p        2  3    4        5 

 

  



 v  ~ 0.11      ~ 0.12      ~ 0.11      ~0.11    
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according to: 
  



 v  ln{p
1.9

/ (2p  1)} / (2p  2),  for every: p = 2, 3, 4, 5, …  

For a power of 1.7,   



 v  is about 0.05 and at the power of 1.6, close to the Zimm value, the 

weighted mean value of   



 v  is very small close to equilibrium and data show that there is 

a steeper slope, approaching the Zimm value at the longest times, near equilibrium, by the 

lower   



 v . Thus the chosen cutoff of the spectrum explains the success of the use of pow-

er laws in the terminal zone. For linear visco-elasticity, a similar expansion is not possible 

and the Rouse spectrum thus cannot represent a linear process.  

 

3.4. The non-existence of spectra of relaxation times  

The response of a stress relaxation test cannot be described by a linear visco-elastic pro-

cess or by a spectrum of (infinite) linear relaxation processes. It is necessary to use the ex-

act description. As solution of the exact equation, an expansion of the potential energy bar-

rier can be used, leading to a line spectrum of elementary non-linear reactions. However, 

the spectral values of the "lines" are so far apart from each other, that they act as separate 

processes and not as a spectrum. In any experiment therefore, only one or two elementary 

processes are detectable. According to the constitutive equations, these two processes can 

be represented by a system of parallel (non-linear) Maxwell elements. Because the relaxa-

tion times are far apart, only one or two Maxwell elements are noticeable in a test, while 

others (if present) flow too fast to be loaded or flow too slow to be noticeable and thus act 

as springs, within the time range of the test.   

The whole relaxation behavior, including the delay time (of no decrease of stress) at the 

start, the linear stress decrease on the log-time scale and the bend off to equilibrium at the 

end of a process can be represented by one non-linear Maxwell element and a parallel 

spring (fig. 3.4) with a non-linear dashpot according to deformation kinetics, representing 

one relaxation time. If the straight relaxation line (on log- time scale) is kinked, there is a 

second process acting with a long delay time [2].  

 

Fig. 3.4. Zero relaxation by zero internal stress [2]  
 

To show that there is only one relaxation time acting in a long time range and not a spec-

trum, the following test was done in [2]. In a relaxation test on wood, after a few hours of 

relaxation at the working strain level, (enough for a parameter estimation), the internal 

stress was made zero by reducing the load on the specimen to a level of about 0.6 times the 

initial strain (depending on the time of testing and to be found by a searching procedure 

see fig. 3.4 and [2]). At this stress level, the stress on the dashpot (and spring of the Max-

well element) is zero in fig. 3.4 and the total stress (in the free spring) remains perfectly 

constant showing no further relaxation or change during the next 24 hours (the time of this 
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test in [2]). This behavior is not possible if there exists a continuous spectrum. The stress 

always should change then. But also a discrete spectrum cannot explain this behavior. In 

order to explain e.g. the measured constant value of the loss tangent or relaxation  spec-

trum of wood and of other glasses, by a discrete linear viscoelastic spectrum, the adjacent 

relaxation times 



  can not differ more than by one order:   



i1  10i  (see [2], pg. 97). The 

zero relaxation test however shows that loading one order of time longer than the first re-

laxation period (of the first element) does not show any change of stress, while it should 

have been of the same relative order. This perfect constancy of the stress shows the next 

relaxation time to be many orders higher than the first one (in stead of one order higher) 

and there thus is no contribution of a spectrum or a line spectrum.  

 

3.5. Viscosity equations  

When a material may show viscous flow, the direct measurement of the viscosity is appro-

priate for parameter estimation. At flow, all sites are used and there is no change of the 

concentration and the stress is constant and the rate of change of the elastic strain is zero. 

Thus in eq.(25) is v  = 0 and   = v .  

For no structural change, eq.(26’) applies or: 

  = v
v 1 1 1

1

. .A sinh( ) A sinh( )
K


                     (39) 

If there are more processes acting (visualized as a system of parallel non-linear flowing 

Maxwell elements) the total stress 



  is:   



  1 2 3  ...,  or:  

1 1

.
1

arcsinh
A

 
   

  
 +

2 2

.
1

arcsinh
A

 
 

  
 + 

3 3

.
1

arcsinh
A

 
 

  
 + … 

The viscosity then is:   



  / 
.

  or:   

1

1

.
arcsinh( / A )

.


 


 + 2

2

arcsinh( / A )


  +  3

3

arcsinh( / A )


             (40) 

Because relaxation times of the processes are far apart from each other, only a few terms, 

are noticeable together in the viscosity equation. All very small values of the variable "x" 

in arcsinh(x) act as one Newtonian process and all very large values are not noticeable. For 

very large values of x is: (arcsinh(x))/x  



 0  and these processes thus are not acting. Be-

cause of this eq.(40) applies for no more than 3 processes. For very small values of x is: 

(arcsinh(x))/x = 1 and processes with this property act as Newtonian or are quasi Newtoni-

an in the range of measuring.  

Eq.(40) then becomes:  

  




1

1A1

 + 2

2

arcsinh( / A )


 + 3

3

arcsinh( / A )


           (40ꞌ)  

It further is possible that the second term may be non-linear, as given in eq.(40’), for high 

strain rates   




.
, while it may become quasi Newtonian at low rates, being 1/(  



2A2). For 

larger values of x,  arcsinh(x) 



 ln(2x) and eq.(40”) thus becomes: 

2

1 1 2 3 3

.
. arcsinh( / A )1 1 2

ln
A A

  
      

    
            (40ꞌꞌ)  

As will be shown below, eq.(40’) and (40’’) hold for solutions and for finely milled rub-

bers, while eq.(40) holds for solid plastic systems. Linear visco-elastic behavior thus does 

not exist for structural materials, even not above glass transition, as follows from eq.(40).  
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3.6. Solutions of high polymers  

The equations above should contain, for a solution, one extra term of the flow units of the 

solvent molecules. The solvent molecules generally flow more easily than the high poly-

mer solute molecules. Thus, dilute solutions only will show one process of shearing of the 

solvent molecules. If this solvent is Newtonian, then real linear behavior can be expected 

to be possible and measurable.  

Eq.(40’) becomes for solutions:  

32

0 0 1 1 2 3

arcsinh( / A )arcsinh( / A )1 1

A A


    

   
        (40ꞌꞌꞌ) 

where   



0  1/ 0A0  is the viscosity of the solvent.  

The following quantities are often used for solvents:  

The relative viscosity   



rel is by definition:   



rel   / 0   

The specific viscosity is given by: 
  



sp  rel  1   

The intrinsic viscosity is defined as: 
  



int  sp / c ,  where c is the concentration.  

The limiting intrinsic viscosity [



], (for low concentration approaching zero), is:  

  



[] lim( int )c0   

The inherent viscosity,   



inh , is defined as (ln(  



rel))/c.  

For small terms and very small concentrations, this is equal to [



] according to:  

32

0 1 1 0 2 0 3 0

arcsinh( / A )arcsinh( / A )1 1 1
ln ln 1

c c A

   
       

         
 

     32
int c 0

1 1 0 2 0 3 0

arcsinh( / A )arcsinh( / A )1 1
( ) [ ]

c A


 
       

      
        (41) 

what holds for low concentrations and small relative viscosities of the groups or: 

i

i 0

arcsinh( / A )
1




 
                 (42) 

These equations can be used as first approximations for parameter estimation. At the end 

the exact equations for  



inh  and 
  



sp  should be used:  

rel 32

1 1 0 2 0 3 0

ln( ) arcsinh( / A )arcsinh( / A )1 1
ln 1

c c A

  
    

      
           (43) 

and: 32
sp

1 1 0 2 0 3 0

arcsinh( / A )arcsinh( / A )1
ln( ) ln

A

 
    

      
            (44) 

For small rates, if applicable, eq.(43) becomes:  

  



ln(rel,0
)

c


1

c
ln 1

1

1A10


1

2A20


1

3A30









          (43ꞌ) 

and at high rates:  

  



ln(rel,
)

c


1

c
ln 1

1

1A10









                  (43ꞌꞌ) 

In materials and wood science, there still is a belief (against facts) in the existence of linear 

visco-elastic relaxation spectra (thus spectra being independent of the stress, ignoring e.g. 

the time-stress equivalence). To discuss the consequences of such an assumption it first is 

necessary to study the cases where there is a possibility of existence of any Newtonian be-

havior as for liquids, soft solids and crystals or metals near melting. Further solutions can 

be regarded for stages between the liquid- and the solid state. Of course, the solvents of 
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these solutions should behave as Newtonian (thus should consist of short bulky rotational 

molecules) in order to have any possibility of linear behavior.  

 
Fig. 3.6.1. The effect of molecular weight of polystyrene solved in benzene, 

                  c = 0.04 g/100 cc; temperature 25 0 C;   



0  = 6.01  



.10
3

 poise [ 17].  

              The theoretical curves are according to eq.(43).  

 
In fig. 3.6.1, measured viscosities by a capillary viscometer are given of a dilute solution. 

It is seen by the straight line parallel to the   




.
- axis, that only the shortest chain, with mo-

lecular weight of 0.288.10
6
, behaves as (quasi) Newtonian (with rel / c   = 1.08 cm

3
/g), 

within the strain rate interval of the measurement. At the molecular weights of 1.24.10
6
 to 

2.22.10
6
, two types of flow units are present, one linear and one non-linear as follows from 

the negative slope, which increases with increasing molecular weight. Three types of flow 

units are acting at the fractions with molecular weights of 5.5.10
6
 to 6.5.10

6
 as follow from 

the sharp increase of the curvature at low values of   




.
, that increases at increasing molecu-

lar weight. For the fit of the curve in fig. 3.6.1, of the solution of polystyrene with molecu-

lar weight 6.5.10
6
 the parameters are: 1 1 01/ A   =  0.168; 2 01/ A   = 0.0795; 3 01/ A   =  

= 1.57; 21/  = 2,01 N/m
2
; 31/  = 0.00129  N/m

2
.  

Comparable results are found for other solutions. For a polystyrene solution in cyclohex-

ane, for instance, two types of flow units are present at a molecular weight: m.w. = 2.4.10
6
 

and three types at m.w. = 5.2.10
6
 at 65 

0
 C, while this occurs at m.w. = 5.2.10

6
, respective-

ly m.w. = 9.2.10
6
 at 35 

0
 C. At 35 

0
 C there only are 2 types of flow units acting (below the 

highest tested m.w. = 9.2.10
6
, while at 65 

0
 C the third kind of flow unit acts above m.w. = 

5.2.10
6
.  

As can be seen in fig. 3.6.1, Newtonian behavior only is possible, in the given strain rate 

range, in dilute solutions of low molecular weight solutes in Newtonian solvents. At in-

creasing molecular weight the probability of formation of stronger types of bonds increas-

es. This also is the case for higher concentrations and when molecules unfold in poor solu-

tions at higher temperatures. These stronger bond types are not acting through the Newto-

nian solvent and thus are non-Newtonian.  

In fig. 3.6.2., the influence of the concentration on   



inh  is given for the highest m.w.  and 

highest temperature tested, thus showing the influence on all three kinds of flow units. The 

equation of   



inh  is given by eq.(43) and the parameter estimation of the fit shows that the  

terms 1/  



A i0 are independent of the concentration: 

  



1

A i0


A00

Ai


(kT / h)N0 exp( E'0 / kT).(0 / N0kT)

(kT / h)N i exp(E'i / kT)
   
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 =  0 0 1

0

' (E ' E ' )
exp

N k kT

   
 
 

                (45)  

 
Fig. 3.6.2. Effects of concentration on   



inh  of polystyrene solved in benzene, 

        molecular weight: 6.5.10
6
; temperature 85 

0
 C;   



0  = 2.99.10
-3

 poise [17]  

       The theoretical curves are according to eq.(43).  
 

and it appears that Ni = N0 and   



0  0
'
T  and Hꞌ0 = Hꞌ1. Thus, flow of the solvent is deter-

mining and the internal stress on the dilute is such that this flow-rate is followed with the 

same apparent parameters. In eq.(45) is N0  independent of the concentration because the 

concentration of the solvent is ~ 1 and the number of activated sites N0 is not influenced by 

the small dilute concentration.  

The curve fitting further shows that   



1/ (c1A10 ) is independent of the concentration  

c  = cꞌN. Because 1 0A   is independent of the concentration according to eq.(45), c



  also 

has to be independent of the concentration and of N. Thus: 

  



c1  c'N1 / (NkT ) c'1 / kT  c''1/ k              (46)  

This needs not be the case in a poor solvent for the second and third process (i = 2,3) 

where Ni is a function Ni(c) of the concentration c that is more than linearly increasing 

with c :  

  



ci  ci / kTN i  = i ic /(kTN (c))               (47)  

showing that another process is acting causing the increase of flow units. This only is pos-

sible if a no bonded (folded) flow unit unfolds, and makes bonds with its neighbours. Be-

cause 1/



  is larger in a good solvent than in a poor one, the polymer molecule extends 

more in a good solvent. Consequently, the polymer in a good solvent also has more proba-

bility of making strong bond types with the neighbours  

It can be seen that the slope of the curves in fig. 3.6.2 is constant irrespective of the con-

centrations. It follows from eq.(41) of these curves, that the inherent viscosity, 

inh rel rel(ln( )) / c ( 1) / c       for dilute solutions, is: 

i
inh

1 1 0 i 0

.
arcsinh( / A )1

.
c A c


  

   
  

Because   



c1A10  is constant, the difference of   



inh  for 2 concentrations c1 and c2 is:  

i,1 i,2
inh,1 inh,2

1 i,1 0 2 i,2 0

. .
arcsinh( / A ) arcsinh( / A )

. .
c c

 
   

     
   =  
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=  i,1 i,2

.1 .
arcsinh( / A ) arcsinh( / A )

n
      

 i,1 i,2

. .1
ln(2 / A ) ln(2 / A )

n
        

= i,1 i,2

1
ln(A / A )

n
 ,   

independent of   




.
, as necessary for a vertical shift of the curve, without a change of the 

form of the curve, at a change of concentration. Thus:  

  



A i,2 / Ai,1  exp( S'i ,1S'i ,2 )/ k .(N i ,1 / N i,2) , proportional to:   



N i ,1 / N i ,2  and Ni is known 

from the shifts of the curves depending on the concentration c.  

Further is n constant or:  

i 0 i i 0 0 i 0 0n c c'N / A c' ' h / k exp( E' / kT)             (48) 

The influence of the temperature on   



inh  and [



] follows from reduced curves of   ob-

tained by using reduced shear rates:   



0 
.
. The   



0-reduced curve:   



/ 0  versus 0   is: 

0 i 0

0 1 1 0 i 0

arcsinh( / A )1
1

A

 
  

     
                (49)  

This means that   



1/ A110 ;   



1/ i  and   



1/ Ai0  are independent of the temperature. From 

eq.(45) follows:   



1/ A110  =    



('0 N1 / '1 N0 ).exp((E'0 E'1 )/ kT) . This is independent 

of the temperature when:  exp(- (E’0 – E’1)/kT)  is independent of the temperature. Thus 

when:  exp(- (H’0 – H’1 )/kT + (S’0 – S’1 )/k) = exp((S’0 – S’1 )/k) or: H’0 = H’1.  

Thus, this reducibility shows that the activation heat for the flow process of the polymeric 

flow units is the same as that for the solvent (in a good solvent). The processes are deter-

mined by activation of the solvent molecules. As mentioned before, from eq.(45) it also 

follows that H’0 = H’1 is necessary for the constancy of   



1/ Ai0 , independent of the tem-

perature. Further, eq.(46) gives the constant i  independent of the temperature.   

In fig. 3.6.5, experimental values of [



] at 65 
0
, 50 

0
, and 35 

0
 C are given. It is  seen that, 

for a poor solvent, a reduced curve is not obtained. The higher the temperature, the larger 

is the limiting intrinsic viscosity [



]. In this case, 1/  



2   increases with temperature,  

 

Fig. 3.6.5. Effects of temperature on  



inh  for polystyrene solutions, in a "poor"  

         solvent [17]; polystyrene m.w. = 5.2 10
6
; solvent cyclohexane; concen- 

        tration, infinite dilution. The theoretical curves are according to eq.(43). 

 
although it should be independent of the temperature. This thus indicates the increase of 

"N" and thus that in a poor solvent the polymers unfold with increasing temperature while 
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they fold with decreasing temperature. The non-reducibility is due to the change of the 

structure by unfolding of the molecules with increasing temperature.  

When   



0 , of the solvent, becomes negligible, reducibility is obtained by multiplication of 

  with: exp(Hꞌi/kT), as follows from reaction kinetics. This is the case for concentrated 

solutions and for solids. Both types of reductions are measured for instance at flow of a 

dilute solution, a concentrated solution and a pure solid of X-518 GR-S rubber (24 % sty-

rene and 76 % butadiene copolymer).  

The reduced shear rate for the concentrated solution and the solid is:  

  



r

.
 

.
exp( H i / RT) and the activation heats are: 3.9 and 9.75 kcal/mol, respectively for 

the 10 % and 50 % polymer solutions. The activation heat (activation enthalpy) of the solid 

(100 % concentration) is 12.5 kcal/mol.   

The activation heat 3.9 kcal-mol of the 10% (dilute) solution is about that of the solvent 

and for this case the curve thus shows the 0  - reduction explained before.  

The rate equation of flow of the 50 % solution follows exactly:  



  1

1

arcsinh( /A )
 




 + 2

2

arcsinh( /A )
 




         (50) 

and thus acts as the pure (100 %) solid polymer, also showing the 2 non-linear groups ac-

cording to eq.(50).  

For dilute solutions Hi (equal to the solvent value) and   



 i (in the case of no unfolding) are 

independent of the concentration. For concentrated solutions 1/  



1  and 1/  



2 , increase with 

concentration as do the activation heats Hi and the reduced values: Aiexp(Hi/RT). As men-

tioned before, because 1/ NkT /   , the increase with concentration shows that there is 

an increase of the concentration of flow units N by unfolding and bond formation between 

a flow unit and its neighbours. The increase of the reduced A-value: Aiexp(Hi/RT)  = 

(kT/h)Niexp(Si/R) with increasing concentration, if more than linearly, indicates that also 

the activation entropy Si increases with concentration as can be expected by the increase of 

bonds between a flow unit and its neighbour with increasing concentration. Because now 

the solvent is not determining any more (as is the case for the   



0  - reduction) the solvent 

molecules are able to flow only when the bonding between the solute molecules flow. In 

highly concentrated solutions, the solvent molecules move together with the polymer flow 

units. Thus, the 50 % solution behaves like the pure solid (see 3.7).  

The before mentioned reducibility by division by   



0  or, what is the same, the equality of 

the activation heats of the polymer and solvent H1 = H0 and the temperature and concentra-

tion independent 1 , shows that the solvent determines the process and the rate determin-

ing step for the solute unit involves the jump of the solvent molecule. The solvent mole-

cule must move in the opposite direction, while the flow unit moves forward to fill out the 

space vacated by the solvent molecule. The same occurs in the diffusion of a large mole-

cule in a solvent of small molecules. This has been tested. A foreign molecule similar in 

structure and length as the monomeric unit, dissolved in the monomer has a translator fric-

tion coefficient 1  = kT/D0, where D0 is the diffusion constant at vanishing concentration 

of this low-molecular weight component (D0 is measured by transpiration, absorption-

desorption or radio-activity of tagged molecules). Far above the glass temperature gT  (e.g. 

in rubber) 1  is the same as 0 , the friction coefficient of the monomeric unit of the poly-

mer backbone. Thus activated units move as if there is no chain and essential is the kinet-

ics, where the entropy is determined by the entropy of random mixing and the enthalpy is 

calculated in terms of the nearest neighbour bonds and their bond strengths as in a regular 
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solution model (in stead of a flexible chain model). However, when gT  is approached, the 

kinetics of the determining process is quite different because then 
0 >> 

1  showing that 

now the scale of activation is reduced to that of the side bonds and now the attached chain 

units prevent free moving of activated monomeric parts of the backbone.  

 
3.7. Undiluted solid polymers  

Chain models are also applied for the description of the behavior of solids. This however is 

not possible, as shown before, and follows from the exact description and explanation of 

the behavior in the following.  

As discussed before, linear visco-elastic behavior will show, on the plot of 



 versus   




.

, a 

straight line parallel to the   




.

- axis (line 1 of fig. 3.7.1). Because this never is the case for 

solids, an extrapolation of the 



 versus 1/  




.

 plot should be made to the zero value of 1/  




.

 

giving the apparent Newtonian value 



  because the other terms in eq.(40’) or, the here 

determining, eq.(51), are zero then.  

  




1

1A1

 + 2

2

arcsinh( /A )
 




  =  



  + 2

2

arcsinh( /A )
 




           (51)  

It is possible that this extrapolation gives a negligible value of   (indicating no Newtoni-

an behavior) while at low rates a good fit of eq.(51) is possible. This indicates that non-

Newtonian behavior may become Newtonian according to: 

  




.

= Asinh(



)   



A   / .  

As mentioned before this only may apply for very short molecules and not for structural 

materials because   



0  then mostly is constant and a low initial stress   



0  will cause a high 

value of 



  and the rate   




.

 still follows the non-linear sinh-dependence of 



 .  

 

Fig. 3.7.1. Viscosity dependent of   




.
. Curve 1:   



 1/ A11.  

               Curve 2: 2 2

. .
(arcsinh( / A )) /( )   .  

               Curve 3: 3 3

. .
(arcsinh( / A )) /( )   .  

               Curve 4 is the sum of curve 1 to 3. Curve abc is the sum of 1 and 2.  
 

Knowing  , (if any), the fit of the second process should be done at higher rates (line bc 

in fig. 3.7.1) and extrapolation of this process to low values of   




.

 (line abc in fig. 3.7.1) 

makes it possible to determine the third process (if any) by the difference of the measure-

ments and line abc (see fig. 3.7.1).  

In fig. 3.7.2, a flow curve is given of natural rubber (a masticated rubber of lightly milled 

crepe). In order to obtain a reduced curve, Hꞌ should be constant and  

 



 67 

 

Fig. 3.7.2. Reduced  shear rate, dependent on the stress, of rubbers [15] 
 

/(NkT) '/(Nk)      has to be independent of the temperature.  As to be expected from 

the m.w., this material shows (quasi) Newtonian behavior (eq.(51)) at low stresses and 

shows two non-linear processes, given by eq.(50), at high stresses. Stronger crushed mate-

rial, with a still lower m.w., did show a Newtonian process, in the whole tested rate range, 

and followed eq.(51), as to be expected. The higher m.w. causes a longer relaxation time 

1/A, while the enthalpy H’ (8 kcal/mol) and activation volume 



  (1/



  



 1.4 104 N/m
2
) are 

the same as for the material with low m.w. This shows the same segmental motions (the 

same volume   and energy of a jump Hꞌ), that are more difficult to coordinate by the long-

er molecules. This causes a high negative activation entropy [2], (i.e. the coordinated seg-

mental motions in long molecules are much less probable) (as applies for wood). 

In fig. 3.7.3, flow behavior is given of polystyrene, measured by the capillary visco-meter 

at temperatures between 165
0
 and 250

0
 C.  

The reduced curve of fig. 3.7.3 is obtained by using  

  




.
s , where   



s  is the viscosity at small   




.

, thus   



s  =   



1/ 1A1  1/ 2A2 .  Thus, eq.(50) 

becomes: 



  = s 1 s

1

arcsinh( / A ) 


 + s 2 s

2

arcsinh( / A ) 


           (50’) 

and represents a reduced curve when   



1 ,   



2 ,  



sA1,  



sA2 are independent of the tempera-

ture. Because   



sA1 =   



(1A11 / A22 )/ 1 and   



sA2  =   



(1A22 / A11)/ 2  is also nec-

essary that A1/A2 is independent of the temperature and thus the enthalpy is the same Hꞌ1 = 

Hꞌ2 what is typical for the possible liquid-like character of rubbery materials where differ-

ent relaxation times (differing here 2 to 3 orders) are determined by differences in entropy.  

The behavior of the short bulky polymers may, by the small activation volume parameter, 

also be quasi-linear visco-elastic in the glass state. The storage and loss shear modules  
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Fig. 3.7.3. Reduced shear rate dependent on the stress of polystyrene, [15].  

 

 
Fig. 3.7.4. Loss tangent - frequency - plot for three glasses of low molecular  

            weight and other polymeric glasses and a crystalline polymer. HPF, 

            hydroxypentamethylflavan; GSP, glycerol sextol phthalate; PTI,  

            2-phenyl-3-p-tolylindanone; (PS, polystyrene; PMM, polymethyl  

            mehacrylate); see [8].  

 

follows the frequency dependence of a single Maxwell element over the range of 4 loga-

rithmic decades (10
-3

  to 1 cycle/sec.,  see fig. 3.7.4).  For a Maxwell element, tan(



 ) is 

inversely proportional to the frequency and thus the logarithmic plot of tan(



 ) in fig. 3.7.4 

shows a slope of - 1. At high frequencies, the figure shows that the behavior is non-linear 

just like the long chain polymers where tan(



 ) becomes nearly constant, independent of 

the frequency.  
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3.8. Crystalline materials  

Flow of crystalline polymers at high temperatures, that is possible for short molecules, the 

best can be studied in pure crystalline materials as single and poly-crystalline metals. At 

flow, secondary (or steady) creep occurs according to the simple equation (50). At this 

stage, the tertiary creep (e.g. by fracture) is not noticed because of the long delay time of 

such a structural change process. The steady creep of metals at high temperatures (T > 0.45 

Tm, where Tm is the melting temperature)  is due to self-diffusion. Dislocations are held 

up by "bad sites" (such as: impurities, alloying elements, crystal imperfections, etc.), caus-

ing stress concentration in the neighbourhood. This stress is relieved by diffusion of the 

neighbours of the bad site, because the activation heat for creep equals that for self-

diffusion. Operations as cold working, heat treatment, annealing, etc., introduce certain 

types of bad sites into the metals. This appears to be the main reason for the occurring of 

more processes. An example of only one process is given in fig. 3.8.1, of steady creep of 

pure aluminum and Al-Mg alloys. The equation of the creep curves thus is:  

  




.
 = Asinh(



)                 (52)  

Beside creep tests, also tensile test were conducted for verification of the real molecular 

parameters, making prediction of behavior possible. Temperature reduction is obtained  

 

 
 

fig. 3.8.1. Steady creep of aluminum and aluminum-magnesium alloys [1]  
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Fig. 3.8.2. Creep curves of Al-Cu and Al-Zn alloys [1].  
 

 
Fig. 3.8.3. Creep curve for polycrystalline nickel.    
 

by multiplication of the rate by exp(H’/RT) with H’ = 35.6 kcal/mol for aluminum and its 

alloys. For all curves, φ is independent of the temperature. In fig. 3.8.2, creep curves of the 

alloys Al-Cu and Al-Zn are given that cannot be expressed by one kind of flow unit, but 

require two kinds according to eq.(50). The same applies for polycrystalline material as 

e.g. nickel in fig. 3.8.3.   

Data of creep of pre-crept Al-Mg alloys did show 3 processes according to eq.(40). Also 

annealed Al-Mg alloys showed 3 processes with quite different parameters.  
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It thus appears that structural changes due to previous treatments have a strong influence 

and separate structural change processes did cause the special additional bad sites. The re-

laxation times of the 2 processes determining the curves of fig. 3.8.2 to 3.8.3 differ about 5 

to 6 orders with respect to each others, showing that a real spectrum does not exist.  

The behavior thus is similar to that of all solids and high polymers and because (quasi) 

linear visco-elasticity only is possible for very short molecules, the general conclusion is 

that linear visco-elasticity cannot exist in structural materials like wood. The conclusions 

of RILEM T.C. 112, based on linear behavior, thus are invalid because long-term predic-

tions of behavior then are totally wrong.  

 

4. Conclusions  

- As shown in [2] and here, the exact equilibrium theory of molecular deformation kinetics, 

explains precisely (correlation ~ 1) all aspects of time dependent behavior like creep, dam-

age, transformations, etc. New is here, that the same constitutive equation with the same 

molecular parameters as e.g. N,   and 1   as for creep and damage, is shown here to ex-

plain all aspects of flow behavior (as given in the figures of 3.6, 3.7 and 3.8) as well. The 

influence on dilute solutions of: the molecular weight; the concentration, or the shift of the 

  - lines dependent of the concentration and temperature; the effects of good and of poor 

solvents (that respectively do and don’t follow the time-temperature equivalence); etc.; and 

the influence of the same factors on concentrated solutions, undiluted polymers and solids 

etc., are all determined and explained by the same parameters and equation. Any other 

model (as the free chain model or rubber theory or the descriptive linear visco-elastic spec-

trum, etc.) is far away from only the possibility of representing very roughly one of the 

mentioned aspects.  

- The rubber theory or theory of isolated flexible molecules was meant to apply for poly-

mers that may show a steady-state flow viscosity and thus are not cross- linked. The theory 

thus was not supposed to apply for viscoelastic behavior in the glassy, or in the plateau 

zones, nor for cross-linked networks and is not able to describe this behavior. This of 

course is evident because short chain units can not be randomly coiled and have the Gauss-

ian distribution of configurations and thus also cannot behave like entropy springs. Chain 

models thus don’t apply for, and have nothing to do with (always at least cross-linked) 

structural materials, even not above glass transition.  

- Further, long "isolated" chains of uncross-linked polymers also don’t behave according to 

the free chain theory. At long times or low frequencies G or Gꞌ should vanish (because of 

the resumption of random average configurations by the macro-molecular coils in the de-

formed state). This is not the case and also Gꞌꞌ shows still finite values and thus no equilib-

rium. At high frequencies, the perfect elastic behavior is predicted and Gꞌꞌ also should be 

zero. This is also not the case and on the contrary Gꞌꞌ increases and becomes many orders 

higher at high frequencies, showing the same values as for crystalline and glassy materials 

and thus showing the same type of process of time dependent behavior.  

- The behavior according to the rubber theory only approximately applies for very dilute 

Newtonian solutions, where isolated chains of not too short molecules (to make chain sta-

tistics and coiling possible), and of not too long molecules, (thus of low molecular weight), 

to prevent entanglement coupling.  

This is the case because rubber theory, is based on the Brownian motion of isolated flexi-

ble chains at higher temperatures above glass transition, thus deals with a very dilute solu-

tion where a separated long molecule is surrounded by solvent.  

- As model, the motions of segment junctions of the chain are expanded into modes (like a 

vibrating string) and each mode corresponds to a discrete contribution to the spectrum H. 
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To keep the series of the contributions to the response convergent, for finite results, an ear-

ly, arbitrary, cut-off of the series is used.  

-Because therefore the influence of short relaxation times is not regarded in the model, the 

theory is not general and only is an analog for behavior after long times (or lower frequen-

cies). The theory thus does not deal with higher frequencies and short-range relationships 

and the prediction of infinite rigidity and infinite loss at infinite high frequencies is invalid.   

- Because of the cut-off of the series, to obtain a convergent series for finite responses, the 

Rouse model predicts, for all materials, a slope of the logarithmic plot of Gꞌ of 2 and a 

slope of 1 for the loss modulus Gꞌꞌ. As can be seen from the given pictures at 2.6 of all 

types of polymeric materials, this never applies. Thus, the best  linear visco-elastic spec-

trum is not able to explain time dependent behavior. Only at a steep descent, thus in the 

terminal zone of uncross-linked polymers, series expansion of the non-linear process 

shows roughly a similar behavior as a spectrum given by such a converging series.  

- Zimm introduced hydrodynamic interaction between the moving sub-molecules based on 

the calculation of steady-flow viscosity of dilute solutions. However visco-elastic data of 

e.g. dilute solutions of polystyrene etc., in the range and conditions where the theory 

should apply (e.g. in the terminal zone), don’t show behavior according to the Zimm theo-

ry but do show behavior close to the Rouse equation, despite the neglect of hydrodynamic 

interaction and internal viscosity  (= intramolecular steric effects) according to the Rouse 

equation. This shows that the Zimm model also is not right as also is explained by the ex-

act kinetic theory.  

- It is shown in this Section that the determining deformation kinetics equation of the vis-

co-elastic behavior at longer times can be expanded into a row that is identical to the row 

of the Rouse equation. A still later cut-off, near equilibrium at nearly zero stress, at the end 

of the relaxation process, gives the Zimm value with the slope of 2/3. The Rouse line spec-

trum thus is a row-expansion of one special non-linear process. There thus is no restriction 

of an application to only dilute solutions, as is the basis of the chain models. This further 

explains why at zero relaxation, (when there is no relaxation although the specimen is still 

loaded after a relaxation test), the spectrum is not present. Because the "spectrum" only 

exists as expanded terms of one process, it does not exist when this single process is not 

acting by the zero internal stress on the sites at zero relaxation.  

Because the row according to the Rouse model needs an early cut-off of the expanded row, 

it therefore gives no explanation of the applied row.  

- The explanation of the Rouse equation as an expansion of one non-linear deformation 

kinetics process also explains why this line spectrum (that seems physical improbable, but 

exists as terms of the row expansion of the exact equation) gives better results than a con-

tinuous spectrum (that does not exist).  

- Further, it explains why the theory also can be applied to undiluted polymers, using only 

one friction coefficient for all types of coordinated motions. These motions, represented by 

the separate terms, are in fact the expanded terms of one process with one relaxation time, 

thus one friction coefficient.  

- The steeper Zimm slope, occurring at shorter times than theoretical possible, in undiluted 

polymers in stead of in the postulated dilute solutions, certainly can not be explained by 

the Zimm theory because the internal friction is of higher order with respect to a solvent 

friction. As shown here, this slope is characteristic for the midpoint of glass-transition.  

- The ladder networks of Blizard and Marvin are identical with the Rouse theory with the 

dense line spectrum approximated by a continuous spectrum. A thorough study in the past 

of ladder networks with both lumped and distributed parameters, has shown that a continu-

ous dynamic modulus function as eq.(21) corresponds to a discontinuous relaxation spec-
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trum with discrete lines. This confirms again the explanation of the behavior according to 

the Rouse model being a row expansion of the deformation kinetics equation.  

- Several modifications of the series of the spectrum H (to apply it for cross-linked net-

works) by arbitrary characteristic modes of linked strands and networks (or series of net-

works) only give qualitative descriptions of the behavior at transition, e.g. with square root 

(Rouse; Bueche), linear, and square dependence of Jꞌꞌ on 



 , all roughly in accordance with 

the range of the measurements of the different types of polymers. None of these models 

however is able to explain, or to describe, the flat plateau at small times. This only is pos-

sible by reaction kinetics [2].  

- Real quantitative reasonable fits of the whole behavior are not possible by the chain and 

power "models". This is evident because the very long relaxation times can not be ex-

plained by extrapolation of the model to motions of large groups of strands of large dimen-

sions, while physics (reaction kinetics) shows that the behavior is explained by the very 

local movement of small flow units (as side bond breaking and reformation or dislocations 

movements in crystals, etc.).  

- After a sufficient long relaxation test, a lower load level can be found of zero relaxation, 

showing no relaxation although the specimen still is loaded. This shows that a single non-

linear process is acting because the internal stress on the sites can be zero at a lower load 

level. A spectrum of relaxation times thus cannot exist.  This non-linear process is acting in 

a wide time interval of many decades (e.g. 5 to 6 decades in "crystalline" materials like 

metals). None of the other methods (chain models, power laws, general functions, etc.), 

that are based, or implicitly based, on the existence of spectra, is able to explain zero relax-

ation.  

- As shown, Newtonian behavior only is possible in dilute solutions of low molecular 

weight solutes in Newtonian solvents at the given, not too high strain rates. At increasing 

molecular weight the probability of formation of stronger types of bonds increases. This 

also is the case for higher concentrations and when molecules unfold in poor solutions at 

higher temperatures. These stronger bond types are not acting through the Newtonian sol-

vent and thus are non-Newtonian.  

- There appear to be 3 types of bonding for solutions. The first type (of rolling shear) acts 

through the solvent, in dilute solutions, on short molecules (= low molecular weight) and, 

(depending on the strain rate), may show linear behavior when the solvent is Newtonian. 

The second type may become determining for longer molecules (because there is a notice-

able local side bonding connecting chains) and shows non-linear behavior but may become 

quasi Newtonian at low stresses and strain rates in a dilute solution (also because the acti-

vation volume parameter of a single, local bond has a small value). The third type shows 

non-linear behavior and is a more firmly side bonding along some length and may show 

segmental jumps as flow movement. Thus, the probability of having all 3 types of flow 

units is larger for the molecules with high molecular weights.  

- The reducibility by division by 0  or, what is the same, H1 = H0, or the activation heat of 

the polymer is equal to that of the solvent and the temperature and concentration independ-

ent i , or Ni = N0, shows that the solvent determines the process and the rate determining 

step for the solute unit involves the jump of the solvent molecule. The independency of   

of the temperature is found to apply generally, for most materials, also below glass transi-

tion.  

- Thus for dilute solutions Hi (equal to the solvent value) and i  (in the case of no unfold-

ing) are independent of the temperature and concentration.  

- For a poor solvent 1/ 2  is not constant (as applies for a good solvent) but in-creases with 

temperature (by unfolding) and the time temperature equivalence thus does not exist. This 
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shows the increase of "N" and thus that in a poor solvent the polymers unfold with increas-

ing temperature while they fold with decreasing temperature. The non-reducibility is due to 

the change of the structure by unfolding of the molecules with increasing temperature. This 

has to be described by a separate bond formation process (as is applied for transformations 

in the main section) to determine the driving force and molecular parameters of the transi-

tion.  

- The properties of short molecules, as linear behavior, and of solutions, showing 0 -

reducibility etc., should not be applied to solids with long molecules as is done.  

- Mostly one or two processes act in concentrated solutions and solids and the rate equation 

of flow is: 

1 2

1 2

. .
arcsinh( / A ) arcsinh( / A ) 

  
 

  

- For concentrated solutions and for solids, 
0  becomes negligible and reducibility is ob-

tained by multiplication of   




.

 with: exp(Hꞌi/kT).  

- Because now the solvent is not determining any more (as is the case for the   



0-reduction) 

the solvent molecules are able to flow only when the bonding between the solute mole-

cules flow. In highly concentrated solutions, the solvent molecules move together with the 

polymer flow units. Thus, the 50 % solution behaves like the pure solid.  

- For crystalline materials, like metals, steady flow is also due to self-diffusion. Disloca-

tions are held up by bad sites (impurities, alloying elements, crystal imperfections, etc), 

causing stress concentration in the neighbourhood. This stress is relieved by diffusion of 

the neighbours of the bad site, because the activation heat for creep equals that for self-

diffusion.  

- Only when no phase- or other transitions are involved, the time-temperature and time-

stress equivalence may apply, as in the glass-state. The reverse statement that this only 

applies for transitions [16], is shown here to be not true.  

- It now clearly is shown that linear viscoelastic behavior does not exist for structural mate-

rials like wood, even not above glass transition.  
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Appendix II: Explanation of annealing by molecular kinetics and derivation 
or the WLF-equation     

This Appendix is expired here and the theory, B(2010), is, in final form, given in a next 

Section: B.3, and is first published  as “Theoretical derivation of the WLF- and annealing 

equations” in: Journal of Non-Crystalline Solids 356 (2010) p 394–399. 
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B.3. Theoretical derivation of the WLF- and annealing 

equations 

 

T.A.C.M. van der Put,  

TU-Delft, Civil Engineering and Geosciences, Timber Structures and wood technology,  

PO Box 5048, NL-2600 GA Delft, Netherlands Tel: +31 152851980, E-mail: vanderp@xs4all.nl:  

 

Discussion and extension of B(2010): “Theoretical derivation of the WLF-and an-

nealing equations”, Journal of Non-Crystalline Solids 356 (2010) p 394–399 

 

Abstract: Based on the deformation kinetics approach, the theoretical derivation is given 

of the empirical WLF-equation of the time-temperature equivalence. The same is done for 

annealing at glass transition. The derivation provides a general theory for any loading his-

tory and replaces the inconsistent free volume model.  
 

PACS 64.70.Q- 

 

1. Introduction 

Time dependent behaviour is explained by the equilibrium theory of deformation kinet-

ics (see [1]) and it never is necessary to apply the phenomenological relaxation time spec-

tra. It is, on the contrary, easy to show (see [2]) that the row expansion of the kinetic equa-

tion gives the Rouse spectrum and e.g. the Zimm spectrum, explaining the success of the 

use of line spectra. The apparent need of linear viscoelastic spectra thus indicates non-

linear behaviour according to deformation kinetics. This exact approach also applies for 

glass transition and annealing and there is no need of the phenomenological free volume 

model and Doolittle viscosity equation giving no explanation of the WLF-equation. This 

follows from the theoretical derivation based on the, in Appendix A discussed, defor-

mation kinetics of structural changes and the constitutive equations of Appendix B. An-

nealing has to be discussed because the determination of the constants of the WLF-

equation and of the glass transition temperature gT  is based on annealing experiments. 

Two connected cases are regarded, one with the Arrhenius shift and the other with a domi-

nating WLF-shift. The results are given in the conclusions. 

 

2. Derivation of the WLF-equation of time-temperature equiva-

lence  

As known, viscosity curves, compliance curves, etc. measured at different temperatures 

may show the same shape independent of the temperature and can be shifted along a loga-

rithmic time or frequency axis to form one curve, predicting the behaviour after long times 

at the lower temperature. Near glass transition temperature, the horizontal shift factor 

Tln(a )  of the displacement of the curves, by temperature difference, along the log-time 

axis follows WLF-equation, Eq.(4), applying for amorphous uncross-linked polymers and 
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other super-cooled non-crystallizing liquids. According to the classical model, e.g. in [3] 

pg.225, this shift factor is equal to the differences in relaxation times on logarithmic scale:  

ln( Ta ) = ln( r1t ) - ln( r2t )  (1)  

where r1t  and r2t  are the relaxation times at temperatures 1T  and 2T  (see Fig. 1).  

 
Fig. 1 – Temperature shift of the viscosity plot along the frequency axis 

 

It is assumed for the viscosity   that: 

ln(1 ) - ln(2 ) = ln( r1t ) - ln( r2t )  (2)  

With the Doolittle viscosity equation: 

ln() = ln(A) + B(v - fv )/ fv  = Aꞌ + Bv/ fv  = Aꞌ + B/f  (3) 

in which f = fv /v is the free volume fraction of volume v, the shift factor Ta  becomes:  

Tln(a )  = ln( r1t ) - ln( r2t ) = ln(1 ) - ln(2 ) = B/ 1f  - B/ 2f  =  

      
 

 
  

1 2 12 1

1 2 1 2 1

(B/f ) (T T )f f
B
f f (f / ) (T T )

1 2 1

2 2 1

c (T T )

c T T




 
  (4)  

where: 2f  = 1f 2 1(T T )   and 



  is the difference of the thermal expansion coefficients 

below and above the glass-transition temperature gT , determining the increase in free vol-

ume.  

Because this free volume model is a phenomenological model, there are many incon-

sistencies. For instance:  

- The necessity of volume changes without shear, (because of the independency of the mo-

lecular weight), while the WLF-equation also applies for shear.  

- The value of 



 , being an order too low for e.g. inorganic glasses, or still more for e.g. 

Cellulose derivatives and orders to low for wood material, shows the amount of free vol-

ume increase not to be a parameter but an accompanying phenomenon.  

- Eq.(2):   r1 r2 1 2ln(t /t ) ln( / )  can not be true for a horizontal shift of the ln( )-plot 

along the frequency axis as shown in Fig.(1). Because when ln( 1 ) at 1T  is equal to 

ln( 2 ) at 2T , then also r1 r2t t  which can not be right for shifted positions.  

- Also the Doolittle equation, Eq.(3), can not be applied for a horizontal shift.  

If ln( 1 ) = ln(2 ), then 1f  = 2f  (constant independent of temperature).  

The Doolittle equation thus should be replaced by the empirical relation:  
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rA'' exp(B / f) t     (5)  

in order to show the shift and to be proportional to rt  according to the classical Eq.(2). 

Then, when ln( 1 ) = ln(2 ), Eq.(5) becomes:  

ln( Ta ) 2 1ln( ) ln( )      ln( r1t / r2t ) + B(1/ 1f - 1/ 2f )  (6) 

equal to Eq.(15) and Eq.(6) thus is explained by deformation kinetics providing the theo-

retical derivation of the WLF-equation as follows.  

According to Eq.(a6) of Appendix A, the rate equation for structural change is:  

v v' 'dN
B N 2sinh B Nexp

dt Nk Nk

      
       

   
 (7) 

This equation is extensively verified e.g. as damage equation for the change of bonds N, 

also within transition zones with changing N and  . For instance in [1], pg. 51) 

       0 0 0 01 C (T T ) /  applies exactly at temperature T within the temperature 

range of the transition for the compression strength of wood at moisture content  . Be-

cause the WLF-equation shows about the same activation volume parameter value: 

v 1/Nk 2.3 c 2.3 17.44 40       , characteristic for self-diffusion, creep and creep to 

failure, the same mechanism and parameter form can be expected to apply at this “melting“ 

of the secondary bonds, which can be given as:  

 g g' T T     .  (8)  

The same applies for the concentration N, as also applied in the empirical Eq.(4): 

g gN N (T T )     (9)  

These linear changes with temperature T are shown in [1] to be in accordance with the 

thermodynamics of molecular activation. The activation volume term of Eq.(7) then is  

 g g

g g

T T'

kN k N (T T )

   
  

 
 (10)  

In this equation is gN  the site concentration at gT , the glass transition temperature.  

Because of the stress dependency of “N”, comparison of viscosities at different tempera-

tures is difficult. Therefore, the shift of the curve of the apparent creep modulus (the in-

verse of the creep compliance) along the time axis is chosen as simple illustration of the 

behaviour. The rate of bond breaking and bond reformation in shifted position dN/dt is 

proportional to the viscous strain rate and neglecting the minor important temperature de-

pendent pre-exponential terms, the steady creep strain rate   is according to Eq.(7) in the 

form of Eq.(a5) of Appendix A:  

     rAexp( ) (exp( )) / t  (11)  

where rt  is the relaxation time. Integration of Eq.(11) gives:     r(exp( )) t / t  and the 
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apparent creep modulus is: rE / t /(texp( ))       

Thus, at the same loading   (which should be kept the same because of the stress depend-

ency of N), the shift of the E - plot follows from:  

1 2ln(E ) ln(E )  2 1ln(t / t )    r1 r2 2 1ln(t /t )   (12)  

 

Fig. 2 – Temperature shift of the apparent creep modulus E, ( 2 1T T ). 

 

For a shift of the plot along the time axis, a value 1ln(E )  at temperature 1T  must be equal 

to 2ln(E )  at temperature 2T . Thus: 1 2ln(E ) ln(E ) 0  , (see Fig. 2) or according to 

Eq.(12): 

1 2 r1 r2 2 1ln(t /t ) ln(t /t )      (13) 

In this equation is: 

2 1   
g 2 g g 1 g2 1

2 1 2 1

(T T ) (T T )' '

N k N k k N N

        
     

 
   

g g 2 1 g g g 2 1

1 2 1 1 2 1

( N ) (T T ) (( N / ) 1) (T T )

k N N kN (N / ) T T

          
  

   
  (14) 

because: 2 g 2 g g 2 1 1 g 1 2 1N N (T T ) N (T T ) (T T ) N (T T )           .  

With 1 g 1n /kN   and g gm N / 1   , Eq.(13) becomes according to Eq.(14):  

     
     

     

1 2 11 r1
T

2 r2 1 2 1

n m (T T )t t
ln(a ) ln ln

t t (N / ) (T T )
 1 2 1r1

r2 2 2 1

c (T T )t
ln

t c T T

  
  

  
  (15)  

giving the corrected, general form of the WLF-equation. In Eq.(15) is mainly:  

r1

r2 1 2

t H H
ln

t kT kT

 
  

 
  (16) 

giving the Arrhenius shift and thus a combined Arrhenius–WLF shift always applies:  


  

 

1 2 1
T

1 2 2 2 1

c (T T )H H
ln(a )

kT kT c T T
  (17) 
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being noticeable when both amounts are comparable near transition (e.g. for methacrylate 

polymers, see [3]). The WLF shift thus only approximately applies when the enthalpy H is 

small. The Arrhenius shift in the transition zone applies separately when 1c 0 , thus when 

m = 0 and thus when: g gN   , giving: 

g gd N dN

dT dT

  
 , (18) 

Because N is proportional to the free volume Eq.(18) states that the relative increase of the 

activation volume with temperature is proportional to the relative increase of the free vol-

ume. This is e.g. the case for glass. When the WLF-shift applies, thus when there is a rela-

tive higher increase of specific activation volume g/   with respect to the increase of 

specific free volume gN / N , this will be due to an increase of the density of active sites. If 

at a certain temperature step, the effective distance between the sites is halved, the number 

of sites is doubled and “m” can be expected to be: 

           g g g gm N / 1 ( / )/ (N/N ) 1 2 1 1 .  

Eq.(15) then, due to this site multiplication, also can be written as: 

     
        

     

1 r1
T 1 1

2 r2 1 2

t t 1 1
ln(a ) ln ln n N

t t N N
  (19)  

explaining the extended empirical Eq.(6) when f is replaced by N.  

By Eq.(14), it is shown that in the WLF-equation any reference temperature 1T  can be 

chosen in stead of gT , when also gN  is replaced by 1N . Further it follows from this deri-

vation, that, although 1c  and 2c  of Eq.(15) are temperature dependent, depending on the 

choice of 1T , the product 1 2c c  is constant, temperature independent, because: 

g g g g g1 1
1 2 g

1 g

N NN N
c c m n m m m m n

kN k kN

  
        

    
  (20) 

In the equations above is: H the enthalpy and k, Boltzmann’s constant. The temperature T 

is in K and “N” is the concentration of mobile segments and not the free volume concen-

tration and thus 



  is not necessarily the difference of the thermal expansion coefficients 

below and above the transition temperature.  

 

3. Annealing of amorphous solids  

Arrhenius temperature dependence 

When an amorphous material, (equilibrated far above 
  



Tg ), is suddenly cooled near 
  



Tg , the 

liquid-like molecular adjustment to a new equilibrium becomes slow. The system is under 

internal stress and annealing is a process relieving the stress when the system passes to 

equilibrium. Accompanying this relaxation, some properties of the system (as: birefrin-

gence, specific volume, viscosity, concentration, etc.) change with time. This is discussed 

in Appendix B, where it shown that one and the same equation describes all these types of 
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changes.  

According to Appendix B, the rate equation of viscous flow at annealing is:  

v  = - 2B  



v sinh(  



Kv )   (21)  

Performing the division 1/sinh(x), or:  

  



1

ex  ex  e
x

 e
3x

 e
5x

 ... ,  Eq.(21) becomes:  

dln(  



v )  v v vK 3 K 5 Ke e e Bdt       
      ,   giving as solution (  



v0  v ): 

 1 v 1 v0
n 0

B t E ( K (1 2n)) E ( K (1 2n))




           (22)  

being a row solution of one process. Fitting this equation shows that there always is a high 

internal stress on the sites. For these high values of   



Kv  a more simple solution is possi-

ble because Eq.(21) then becomes:  

v v
dln( ) K

Be
dt

  
    (23)  

or:  dln(  



v )∙ vKe 
  B∙dt ,    or integrated: 

1 v 1 v0E ( K ) E ( K ) Bt        (24)  

where  1E x  is the exponential integral:  1E x  = 

  



e
s

s
x



 ds .  Thus:  

 1
v 1 1 v0K E E ( K ) Bt        (25)  

In [4], measurements are given of the birefringence and density of a crown glass and 

Eq.(23) or Eq.(b5) apples exactly with a correlation close to 1 in the given temperature 

range between 490  to 540 0C  (see Fig. 3).  

 
Fig.3 – Density increase and stress decrease during annealing of crown glass.  

The theoretical curves follow from Eq.(24).  
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The test-specimens showed mutually variability of the parameters. Every specimen is an 

unique giant molecule. The average value of v0 0K    , from the fit of stress relaxation 

and of the volume contraction data, was 4.7. However, there might be a sudden change of 

  



Kv0 , between 520 and 530 
0
C, 

 
from about 5 to nearly halve this value, indicating two 

processes acting. More data are necessary to confirm this. The variability of   



Kv0  among 

the test-specimens is a property of glasses having a structure depending on the thermal his-

tory. This also applies for the viscosity, specific heat, specific volume, index of refraction, 

etc. Eq.(24) can be written for higher values of   



Kv  as: 

v0v
1 v 1 v0

v v0

exp( K )exp( K )
E ( K ) E ( K ) Bt

K K

  
       

   
    or:  

 v
v v0

v0 v0

1
1 ln 1 B K texp( K )

K


      

  
,  (26) 

After the delay time, the value v01/ K   is the slope of the approximate straight line on 

ln(t) scale. This slope has to be constant independent of temperature and stress to have 

shifted lines along the time axis at different temperatures. The independency of stress 

means that in c0 0 0K /NkT       , the number of sites N is proportional to the max-

imal initial stress 0 . This time-stress equivalence combined with the time temperature 

equivalence is mentioned in [5], pg. 94, where it is found that high strain has the same ef-

fect on aging as an increase in temperature. The time-stress equivalence is an important 

property of e.g. building materials, making it possible to determine the long term strength 

by constructing the master creep curve at constant temperature (see e.g. [1] pg.70).  

From Eq.(26) follows for the shift along the time axis at different temperatures: 

  



v1 / v01  v2 / v02  0 , that     1 v1 1 2 v2 2B K t B K t  or: 

        1 v10 v1 v10 1 2 v20 v2 v20 2B K ( / )t B K ( / )t     or:   1 1 2 2B t B t ,  

giving the Arrhenius shift:  

1 2 2 1 1 2ln(t ) ln(t ) ln(B ) ln(B ) H'/ kT H'/ kT       (27) 

 

WLF temperature dependence 

With reference to the equilibrium values eN  and using Eq.(19), Eq.(7) becomes: 

e e e
e

dN 1 1
B(N N ) exp n N

dt N N

  
       

  

 (28) 

with: e g en /kN   and N -   



N e  as active amount of sites.  

Eq.(28) can not be solved in terms of familiar functions and solutions in the form of infi-

nite series can be obtained that can be tabulated, just like is done with sin(x), that repre-

sents an infinite series as solution of its appropriate differential equation. However, also a 

precise approximation is possible as follows:  

Eq.(28) can be written:  

e
e e

e e

Nd 1 1 1 1 1
B exp n N

dt N N N N N N

     
               

  (29) 
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or:   eNds
Bs exp(s)

dt N
  ,          where: e e

e

1 1
s n N

N N

 
  

 
   or: 

dln(s)  



.exp(- s) = - B  



.
  



N e

N
  



.dt  (30)  

At the end stage of the process   



Ne / N  



 1 and integration of Eq.(30) then gives:  

1 1 0E (s) E (s ) Bt    (31)  

where 1E (x)  is the exponential integral.  

More general the solution is: 1 1 0 eE (s) E (s ) BtN /N  , with a weighted mean value N . 

For high values of “s” 1E (s) exp(s)/s  and the solution then becomes: 

  0
0 e

sse / s e / s BtN / N , being approximately:   

0
0 e

ssNe N e BnN t B't        (32) 

because for high values of 0s  and s is: e e e es n (1 N / N) n (1 N / N) n     , about con-

stant and the best estimate of N  is N in the first term and 0N  in the second term.  

Because Eq.(31) is the solution at the safe side and Eq.(32) the solution at the unsafe side, 

the mean of both equations can be taken as total solution of Eq.(29):  

0
0 1 1 0 r

ssNe N e E (s) E (s ) B'' t t / t        (33) 

The proof that this is right, follows from differentiation of Eq.(33). This gives Eq.(30) with 

a small negligence of e e(N N )/nN  ( e e(N N )/40N  ) with respect to 1. Examples of 

curve fitting to Eq.(33) of materials showing the WLF-shift at annealing, as glucose, Poly-

styrene, Polyvinyl acetate, are given in [3]. There also Fig. 4, of A Kovacs is given, show-

ing a perfect fit by the theoretical Eq.(33). 

 
Fig. 4. Isothermal volume contraction of glucose measured after sudden cooling to the 

temperatures indicated from [3] (test-points and theory: Eq.(33))  

 

4. Conclusion  

- Not the volume effect, but the structural change equation (Eq.(7), Eq. (21), Eq.(28) or 
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Eq.(b5)) of the equilibrium theory of molecular deformation kinetics, as treated in [1], 

which is shown to explain all aspects of time dependent behaviour of wood, is shown here 

to also give the theoretical explanation of the empirical WLF-equation and of the volume 

change and stress relaxation at annealing.  

- The form of the WLF-equation is explained by the properties of the activation volume 

parameters near transition, as given by Eq.(10).  

- It is shown by Eq.(17) that the WLF- shift is accompanied by the Arrhenius shift. The 

right WLF-shift has to be done on an by a factor exp(H/kT) reduced curve.  

- The constant value of g g/kN , or the proportionality of gN  (the concentration of 

sites) with the initial applied stress  , is a similar property of the activation volume as ap-

plies for glasses, wood, concrete and some metals (see [1]) which explains the time-stress-

equivalence.  

- The equations show that always high internal stresses are acting even at the end of stress 

relaxation, probably by the high molecular attraction forces in the voids. The decrease of 

stress then is due to a decrease of restrained voids.  

- The WLF-shift is due to site multiplication with temperature increase near gT . 

- The WLF temperature shift applies, when the increase of specific activation volume 

g/   is twice the increase of specific free volume gN / N  with temperature.  

- The Arrhenius temperature shift in the transition zone applies when the increase of the 

specific activation volume with temperature is proportional to the increase of the specific 

free volume.  

 

Appendix A - Basic equation of structural change 

As discussed in [1], the reaction rate equation for structural change: 

a ad /dt B 2sinh(f A /(kT))      (a1) 

can be expressed in the concentration term:  

a a 1N A /       (a2) 

where  is the jump distance of the activated unit; aA , the cross-section of that unit; 1  

the distance between the activated sites, and aN , the number of these sites per unit area. 

Then a 1 tN / N   is the number of activated elements per unit volume. The work of the 

stress af  on the activation unit is: a af A  .  

The equivalent work by the part of the mean macro stress  that acts at the site is  times 

the unit area thus is:  

v a a a1 1 N f A         or:   a a v af A /N    . (a3)  

Also the chemical work, expressed as an equivalent chemical driving stress, can be added 

as stress to the external stress. Eq.(a1) thus becomes: 

a a 1 a a 1 ad(N A / )/dt B (N A / ) 2sinh( /(N kT))           (a4)  

 a a 1d(N A / )/dt  can be  the rate of increase of activation volume. If this is proportion-

al to the free volume, this term also gives the rate of free volume increase.  a a 1N A /  
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also may be the mean viscous strain per unit area and Eq.(a4) then becomes: 

 v  2B v sinh( vK  ). For pure creep, at bond breaking and bond reformation in a shifted 

position, the number of bonds or sites remains constant and Eq.(a4) becomes:  v  - 

2B v0 sinh( vK  )     v0 vB exp( K )   (a5)  

For a process of changing site density at annealing Eq.(a4) becomes with 'T    because 

of the entropic driving force:  

v vdN/dt B N 2sinh( '/(Nk)) B Nexp( '/(Nk))          (a6)  

This last approximation of 2sinh(x) ≈ exp(x) follows from the derivation of the WLF-

equation showing always a high internal stress on the sites.  

 

Appendix B - Basic equation of annealing relaxation 

The following mechanism scheme is able to explain the measurements. At suddenly cool-

ing, the shrinkage and configurationally change is confined by strong side bonds in the 

same way as crossing molecules bridging voids. It follows from the theory that the internal 

stress on these sites is always high and thus the crossing molecules are always under high 

pressure by the molecular attraction forces of the void boundaries trying to close the void. 

A segmental jump of the highest loaded crossing unit will unload this unit but increases the 

load on the adjacent crossing units causing the next one to be high loaded. The segmental 

jumps cause a decrease of the void volume (free volume) as well as a decrease of the num-

ber of jumping elements. This causes a process of decreasing sites according to Eq.(a6) 

also by the decreasing void volume, a mean stress decrease in the visco-elastic material 

surrounding the voids. The rate of decrease of the void volume determines the rate of vis-

cous displacement and thus the rate of density increase and a relief of the elastic stress in 

the surrounding material and a description is possible in terms of elastic and viscous 

strains,   and v  of that material. The stress on the elastic material of the unit cross sec-

tion is v  and the strain: v 2( )/E   , where 2E  is the modulus of elasticity of 

the elastic material. This strain causes a stress on the viscous sites of v v 1( )E    

where 1E  is the equivalent modulus of elasticity of the elastic material at the site. 

These constitutive equations are the same as given by the non-linear three-element analogy 

of Fig. 5, applied to annealing.  

At a sudden cooling and no external loading, the free spring can be assumed to shorten 

directly what is not followed by the dashpot, and there is an internal stress  

v 1 vE ( )     (b1)  

This is in equilibrium with the force on the parallel spring. Thus:  

v 2E     (b2) 

and from Eq.(b1) and (b2) follows that:  

1 2 1 v(E E ) E         or:   1 2
v 2 v v

1 2

E E
E K

E E
      


  (b3) 

The strain rate of the non-linear Maxwell element, for a structural change process, is:  
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Fig. 5. Three-element model 

 

 v  - 2B  



v sinh( vK  ) v vB exp( K )       (b4)  

According to Eq.(b3), this equation also can be written in v   : 

   - B exp( )   (b5)  

giving the stress relaxation of annealing.  

Eq.(b5) is the stress relaxation equation for high stresses, that does not only apply at the 

start, but also at the end of the relaxation process when   approaches zero. As discussed 

before, this is due to the remaining high loaded units crossing the voids.  

As discussed in Appendix A, a segmental jump of  , of the bridging segments, decreases 

the void volume with vA  when vA  is the surface of the bridged void. The relative de-

crease of the free volume then is v v 1N A /  , when vN  is the number of adjacent voids 

per unit cross section and 1  the distance perpendicular. This decrease of the free volume 

is v vN A  times the viscous strain 1/   thus is proportional to viscous strain v . In 

Eq.(b4), v  can be replaced by the free volume change being the same as the total volume 

change (as contraction or density increase). The same equation gives in the form of Eq.(b5) 

the stress relaxation.  

Because the birefringence (mm/mm) is proportional to the stress (for most real glasses 0.1 

N/mm
2
 produces a birefringence of 3.10

 – 7
), Eq.(b5) also gives the decrease of the bire-

fringence. Further, when the equation is written in 0/  , it also gives the change of the 

relaxation modulus:   



( / 0) / (0 / 0) , or the change of the viscosity: (



 / 0 )/(  



0  / 0 ) 

  0/  with time, when the relaxation modulus is measured at the different temperatures 

with the same   



0 , and the viscosity with the same 0 .  
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Abstract: The classical nucleation and growth model is modified and it is shown that the 

concept of fluctuations, instability and surface energy is not needed and that, (as applies 

for glass transition), nucleation is a common example of the kinetic theory of structural 

change processes, with a special driving force and a special property of the activation vol-

ume parameter. This last follows from explanation of diffusion tests. This new nucleation 

equation leads to a new vision on heterogeneous nucleation, applicable to solids. The equa-

tion also provides, as necessary, the theoretical equation of the thus far empirical C-curves 

of the TTT-diagrams (time-temperature-transformation diagrams).  

 
PACS-codes: 02 – 64 – 81.  

Keywords: Characterization – Nucleation  – Solidification – Stresses - Reaction kinetics.   

 

 

1. Introduction 

Based on the kinetics equation for structural change of Appendix A, which by its form 

is e.g. able to explain transient nucleation and structural relaxation of glasses, a new theory 

of nucleation is derived starting by extension and correction of the classical model. There-

fore the essence of the classical model is first discussed in Section 2.  

In Section 3, based on general conditions, the derivation of the equilibrium concentra-

tion of the embryos depending on size is given. Herewith information is obtained on the 

nucleation mechanism and on the driving force for embryo formation. The classical dis-

tinction between volume free energy and temperature independent surface free energy of 

the embryo is shown to be superfluous and questionable. 

In Section 4, heterogeneous nucleation is derived which generally applies, also for sol-

ids. The derivation is based on continuity condition of the growth rate, replacing the classi-

cal model of surface energy, in the form of non existent surface stresses in solids.  

In Appendix C, based on diffusion tests, the theoretical explanation is given of the dif-

ferent empirical equations by their different activation volume parameters, based on the 

derivation of the empirical power law equation in Appendix B. Herewith the special form 

of the activation volume term of the driving force of nucleation is found as applied in Sec-

tion 5.   

It is shown in Section 5, that the special expression of the activation volume of the 

basic rate equation explains the data and nucleation behaviour (as well for homogeneous as 

for heterogeneous nucleation by one equation). As discussed in Section 6, this rate equa-

tion shows the well known increase of the rate at the increase of undercooling up to a max-

imum value and then a decrease of the rate at larger undercooling steps giving thus a theo-

retical equation and explanation of the C-curves of the time-temperature-transformation 

diagrams (TTT-diagrams).  
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2.  Discussion of the classical nucleation model  

For homogeneous nucleation is, according to the classical nucleation theory, the 

change in free energy of the system eE due to the formation of a spherical phase cluster 

of radius R:  
3 2(4 / 3) 4eE R g R        (1)  

where g  is the change of the free energy per unit volume and   is the free energy of the 

interface between parent phase and fluctuation, which is assumed to be constant, inde-

pendent of the temperature. When g  < 0, eE  of eq.(1) has a maximum at the critical 

size of cR  and fluctuations with cR R  are more probable to shrink and dissolve than to 

grow because of the decrease of the free energy, while the fluctuations of cR R  grow 

spontaneously, also because of the decrease of the free energy. The critical value cR R , 

follows from:  

d(ΔE)/dR = 0, or according to eq.(1):  
24 8 0R g R        or: 2 /cR g    (2)  

Substitution of cR  of eq.(2) into eq.(1) gives the critical value for nucleation:  

3 2(16 ) / (3 )cE g     (3) 

Because g  has the form ( )eg h T s s T T         and   is assumed to be constant, 

with respect to temperature, eq.(3) gets the empirical form of 2
2 / ( )c eE C T T   . In liter-

ature, e.g. [1], [2], [3], [4], also other expressions for cE  are chosen to adapt better to da-

ta.   
The general thermodynamic reasoning on shrinking or grow gives no explanation of 

behaviour because it may happen in infinite ways and only knowledge of the mechanism 

provides predictable behaviour. For instance, it should be explained how a single fluctua-

tion in solids transformation may exist involving so many molecules that a distinction is 

possible  

Figure 1. Concentration of embryos depending on size  

 

between a separate constant surface energy and a volume energy, up to the size of the criti-

cal embryo. As an answer the modification was proposed to regard embryo formation as 

result of successive reactions. In [5], e.g., embryo formation is regarded to occur by a large 

number of successive bimolecular reactions (explaining also why specific activation ener-

gies have to be applied) as follows:  

1 1 2O O O  and: 2 1 3O O O  etc. summed up to: 1 nnO O .  

For equilibrium of these reactions is for in , the number of embryos per unit volume con-

taining i molecules each:  
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1
1

1 1

/ ( )
exp( / ) / /

/ ( )

i i
i i ii

i

n n n
E kT n n n n

n n n


   


  (4) 

because 1in n n   , where n is the total number per unit volume. iE  follows from 

eq.(1) and eq.(4) similar as the dash-dot line in fig.1. Thus, the number of embryos per unit 

volume, which get converted from size i to size (i + 1), is the same for all values of i at the 

same conversion rate equal to the nucleation rate. The amount of embryos in  is constant 

within each size but decreases by the increase of R.   

At nucleation the stationary case is regarded, determined by the rate at nucleation of 

the critical embryo, the nucleus. To explain eq.(5), which has the empirically found form 

of a forward reaction only at nucleation, it was assumed that for small embryos, the con-

centration is about the equilibrium concentration ,i en . For large sizes the concentration was 

assumed to be far below the equilibrium value and to be zero for i   (see fig. 1), loos-

ing therefore its backwards reaction term. This apparent forward nucleation rate thus 

is assumed to be:  

exp(( ) / )t cn n E E kT     (5)  

in agreement with measurements. In eq.(5), tE  is the energy barrier for transfer of atoms 

across the interface for nucleation at frequency   and cE , the driving force required for 

nucleus formation.   

Substitution of eq.(3), with ( )eg s T T s T       , shows that eq.(5) has the form of: 

2 2
1 2 1 2exp( / ( ) exp( / )en A A T T A A T        (6)  

for homogeneous nucleation.  

Analogous is for the step growth mechanism of fig. 2:  
2 2eE R h g Rh      ,                                          (7)  

 

  

Figuur 2. Step-growth after finished ledge growth  

 

leading by d(ΔE)/dR = 2 2 0Rh g h      to the critical size for nucleation of: 

/cR g       (8)  

and to the general form of eq.(5) of:  

      1 2exp( / ( ))en A A T T     (9)  

This is regarded to be confirmed in fig.3, by the empirical straight line of ln( n ) against 

1/ ( )eT T  with the negative slope of 2A . Equation (9) is given in fig.3 by the drawn line.  

Regarding the above given classical model the following remarks can be made:  

- The free energy E  of eq.(1) is based on a constant   independent of temperature. This 

is improbable because no real equilibrium, 0n  , is possible at eT T  because eq.(2) and 
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Fig. 3 Nucleation and growth rate of ice crystal 

 

eq.(3) show impossible infinite values of the nucleus dimensions ( cR ) and of reaction heat 

to obtain equilibrium. Because 2 / ( )eA T T  has the form of /E kT  according to eq.(5), 

E  becomes  infinite when eT T . This will be corrected to the right values in Section 5, 

by applying the right driving force and regarding the backwards reaction for small driving 

forces.  

- Because the volume increase of the growing embryo, up to 3(4 / 3) R  and the surface 

increase up to 24 R  are coupled being one and the same process,   and g  should show 

one and the same temperature dependence. In fact thus one temperature dependent embryo 

growth process has to be regarded as is shown to apply in the following sections.  

- The free energy representation by e.g. eq.(5): 3 2(16 ) / (3 )cE g   , is confusing be-

cause it contains both specific heat and driving force values for volume and surface g  

and  . Because of the identical growth of volume and of surface, the defined apparent sur-

face energy   should be proportional to g  and cE . This follows directly from the elim-

ination of  , in stead of cR , from eq.(1) and eq.(2), giving:   
3(2 / 3)c cE R g     , (10) 

the right form of the activation energy. Mathematically eq.(10) is identical to eq.(3). 

As shown in Section 3,   is a superfluous parameter.  

 

3. Derivation of the embryo equilibrium concentration  

Because cE  is the highest for nucleation, the nucleation reaction is the slowest and is 

determining for the conversion rate of all embryos of the sequence of bimolecular reac-

tions.  The real rate and equilibrium equations of the classical model can be derived as fol-

lows. Because in fig.1 the amount of embryos per unit volume n is a function of the radius 

R and growth is per step, the rate of sequential cylindrical embryo formation of fig.2 is: 
2 2/ ( ) / (( / ) 2 )dV dt V d nh R dt n R h R nh R R           (11)   

where the dot means derivative to the time t: /R dR dt . In this equation R  or V  follows 

from the kinetic diffusion equation in the form of eq.(A5) of Appendix A.  

Eq.(11) can be given per embryo to get the growth rate in number of molecules per em-
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bryo:  
2 2 2((( / ) / ) 2 ) (( ln / ) 2 / )v n R n h R h R R n R Rh R h h R R               (12)   

because n is constant, independent of time t at steady state. This can be written: 
2(( ln / ) / )e ev n R A V h R R    ,  (13) 

The determining reaction is the slowest reaction thus v  is minimal at the nucleation step. 

This is the case when in eq.(13) /e eA V , the interface surface/embryo volume ratio, is min-

imal, as is satisfied by the spherical and by the cylindrical form of the step in fig.2 and this 

minimum also applies when n is minimal, thus  when ln / 0n R    at cR R . Then, 

ln / / cn R a aR R      is required to have a real minimum at cR R , necessary for hav-

ing an end-product of the successive reactions (being for other cases) the start of grain 

growth and necessary to have a negative slope for decreasing n at increase of R (for 

cR R ) and finally to have an exponential quadratic function in R, necessary for the pos-

sibility of an expression in specific free energy values. Thus integrated:   
2

0 ,exp( / (2 ) / )c t dn n aR aR R E kT     = 0 ,exp(( ) / )t dn E E kT  =   

                                                                    exp( / )an E kT      (14)  

where an  is the active reactant concentration and ,t dE  (independent of R) acts as resultant 

energy barrier for every migrating molecule between every embryo. Because 2R  is propor-

tional to the total number of molecules per embryo, eq.(14) represents the equilibrium 

curve of the classical steady-state model, given in fig.1. The positive term 2 / 2 caR R  acts 

as driving force for embryo formation and by the term 2R  it is related to the specific vol-

ume free energy term g , (with g  as absolute value of g ) by: 
2 2/ 2 / ( ) /c daR R E kT R h g kT    . The negative term in R, related to the surface of the 

embryo as derivative of the volume term, gives: 2 /caR Rh gR kT    , where cR g  is 

the specific energy barrier for embryo formation, replacing constant   of the classical 

model.  

The same result is found by applying the classical volume- and surface energy terms: 
2( 2 ) /R h g Rh kT    

2 / 2 caR R aR , giving 2 /ca R h g kT   and cR g   .  

Thus E  of eq.(14) is: 2 2 cE R h g RR h g         

For cR R , the critical embryo for nucleation, the value of cE  is: 

2 2c c c c c cE R h g R h gV R A            2( / 2)c caR kT hR g  cV g     

 (15)  

According to eq.(11), the nucleation and sequential growth rate is:  

2 c cV hR n R                ( 0 ,2 exp( ( ) / )c c t dhR n V g E kT R     ) (16)   

This equation will be discussed in Section 5. 

 

4. Equilibrium condition of homogeneous and heterogeneous embryos 

4.1. Homogeneous nucleation 

The derivation of Section 3 can be repeated for homogeneous nucleation. Analogous to 

eq.(11) and (12) of Section 3 is for spherical embryos:  
3 3 2/ ( (4 / 3) ) / (( / )(4 / 3) 4 )dV dt V d n R dt n R R n R R           (17)  
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3 2 3(( ln / )(4 / 3) 4 ) (( ln / ) / )(4 / 3)e ev n R R R R n R A V R R              (18)  

For ln / 0n R    at cR R  is now required: ln / ( / )cn R a aR R R     , to have a nega-

tive slope for decreasing n at increasing R (for cR R ) and to have an exponential third 

degree term in R, necessary for the possibility of the expression in a specific free energy 

value. Integrated is:  
2 3

,exp( / 2 / (3 ) / )c c t dn n aR aR R E kT     = ,exp(( ) / )c t dn E E kT      (19) 

and: 3 3/ 3 ((4 / 3) ) /caR R R g kT  , or: 4 /ca R g kT   and 

2 2/ 2 4 ( / 2)caR R R g    . The classical value   now is:   / 2cR g  as also found in 

Section 2. The critical value for 
cR R  is 2/ / 6c cE kT aR   3(2 / 3) /cR g kT    (or:  = 

3 216 / (3( ) )g kT )   (20) 

 
Fig. 4. Spherical cap 

  

4.2. Heterogeneous nucleation 

The formation of a critical embryo on a foreign surface will show the minimum /e eA V  

shape by its form of a spherical cap (see fig. 4). According to the classical model, the free 

energy of formation of this heterogeneous embryo is: 

E  3 3( / 3)(2 3cos cos )g R    
2

1,22 (1 cos )R     2
2 1( sin ) ( )p pR     

 (21) 

where surface energies are regarded to be identical to surface stresses, (see fig.4). Resolv-

ing these surface stresses into horizontal components: 1 2 12 cosp p     , the critical 

value: 3 3 2
1,24 (2 3cos cos ) / (3 )cE g        is found when also 2 /cR g   is ap-

plied. This is a factor 3((2 3cos cos ) / 4)    times the homogeneous value of eq.(3). 

However the model of surface stresses, equal to the surface free energies, being in equilib-

rium at the intersects, does not apply for solids and should be replaced by continuity condi-

tions of the growth rate. Because the rates R  are  perpendicular to the surfaces (see fig. 4), 

because of the radial growth, they are also perpendicular to the assumed fictive surface 

stresses in these planes and the same expressions occur by the condition of continuity of 

the rates, (the equilibrium of rates) as would occur by the equilibrium condition of the fic-

tive surface stresses. The rate of growth of the spherical cap volume is: 
3 3(( / 3)(2 3cos cos ) ) /d R dR     3 2(2 3cos cos )R R      (22) 

This should be equal to the growth rates at the two surfaces.  

The growth rate at the spherical surface is: 22 (1 cos )R R  .  

The growth rate at the flat circular plane is:   2( sin ) cosR R    (where: 

coscircleR R  )  
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Summing up, in total at the planes: 2 3(2 3cos cos )R R    due to the continuity 

condition of the rates in accordance with eq.(22). There thus is no need to introduce sur-

face energies and  - stresses and the continuity conditions are automatically fulfilled, as 

shown by the derivation according to Section 3.  

According to Section 3 is analogous to eq.(11):  
3 3( (4 / 3)((2 3cos cos ) / 4)) /V d n R dR       (23)   

leading to the same equations as in Section 4.1 above for homogeneous nucleation when 

everywhere “π” is replaced by “ 3(2 3cos cos ) / 4    ”.  

 The critical value of E  then is: 

cE  3 3(( / 6)(2 3cos cos ) )cR g        (24) 

which is identical to the classical value when: 2 /cR g   is substituted.  

 

5. Estimation of the nucleation equation  

The step-growth mechanism, regarded in Section 3, of the liquid-solid transformation 

is discussed as example. The growth rate of the step is normally sufficiently high so that 

each step nucleated on a surface spreads to form one molecular plane of height h in fig.2, 

before the formation of a second nucleus on the surface. The growth rate then is equal to 

the nucleation rate times h.  

According to eq.(16) this growth rate is: 2 c cV hR n R , thus the number of reacting mol-

ecules N follows from: 2 c cN hR n n R  , where n is the molecule density of the cn  criti-

cal embryos. According to Appendix A this equation is: 

 2 c cN hR n nR  2sinh( / ( ))t vBN NkT   exp( / ( ))vC NkT   (25) 

for high driving forces. Because of the first order transformation there is a discontinuity of 

the enthalpy, entropy and volume at the transformation temperature and the initial driving 

force thus has the form of:  

0/ ( )v mN H T S S T T S T            ,  (26) 

while due to the volume change according to Appendix C: 

 2
1 0( / )m v mN N b N       (27)  

The derivation in Appendix C is based on high stresses and according to eq.(C5), N is pro-

portional to the square of the initial applied stress 0v  at the sites. For small driving forces 

when 0 0v  , N should approach the constant equilibrium value e.g. at “melting” mN  

and thus the small term mN  has to be added to the expression of N accounting for lower 

stresses, which is negligible in the high stress segments nucleation of fig.5, given by 

eq.(C2). Eq.(25) then becomes for phase change at appropriate high driving forces:  

0

2 2
11

'
exp exp exp

( ( ) ( ) )

v

m

S T NdN D
C C C

adt NkT kT N b S T T
T

 
 
     

      
        

 

, (28)  

where 2

0 1' / ( )D SN kTb S    and 2

1 1/ ( )ma N b S  .   

Eq.(28) is given for ice in fig.3 by the dashed line together with eq.(9) of the classical nu-

cleation model, given by the straight solid line.  
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By much higher stress due to much higher undercooling for homogeneous nucleation, 
v  

of eq.(28) may become the maximal “flow” stress at that temperature and eq.(28) turns 

approximately to eq.(6):  

   2 2
1 1 2 1exp / exp / ( ( ) ( ) )f mN C NkT C C N b S T      ,  

but N  is finite, =  1 2exp / mC C N , when 0T  .  This high internal stress also may ap-

ply for heterogeneous nucleation and is e.g. found for crystallization of a metallic glass [5] 

 
Fig. 5 |Dislocation velocity in LiF – Equation (C2)  

  

showing the activation energy for viscous flow, in stead of the much lower activation ener-

gy for diffusion. 

For low driving forces of liquids near melting, the sinh-equation of eq.(25) applies. 

Thus:  

2
1

''
'sinh ' '''

( )

c c D T
N C C D T

NkT NkT a T

     
     

  
 and 0N   when 0T  .  

This result is generally accepted in literature and applies e.g. at diffused interphase inter-

faces. The high driving stress “curve-fitting” of eq.(28) in fig. 3 follows from the mean 

value of the points at the ends at 1/T  = 10 and 30, and one point of the classical straight 

line fit, eq.(9) at 1/T  = 20. Then is: D = 1.27 and 1a   0,0116 or:  

2
1log( ) log( ) ( ' ) / ( ' )N C D T a T     29.07 (1.27 ) / (0.0116 )T T    .  (29) 

It can be seen in fig. 3 that, in this case, the classical straight line fit in 1/ T , eq. (9): 

1 2ln( ) ln( ) /N A A T   , only is straight in the given range of 1/T between 10 and 30. 

Eq.(9) thus is an approximation in a small range and is wrongly applied outside the range 

of allowable application e.g. for 



T 



 0. 

The real curve, eq.(29) falls down to 1/ 4T   and the curve thus explains the empirical 

maximum nucleation rate at some undercooling. Differentiating eq.(29) gives 

 2
1/ ' / ( ' ) / 0dN d T N d D T a T d T       , or 2

1 'uT a     (30)  

In this case this maximal rate is at an undercooling of ' 0.0116 0.108uT a      

Eq.(30) explains the measured C-curves of the time-temperature-transformation (TTT) 

diagrams as is shown in Section 6. The fact that the data of fig. 3 follow the forward reac-

tion eq.(30) only, shows an always high driving stress of quenching experiments. As dis-
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cussed in [6] for glass transition, the always high driving force can be explained as follows. 

At suddenly cooling, the shrinkage and configurationally change is confined by strong side 

bonds. This behaves in the same way as when crossing molecules are bridging voids. The 

internal stress on these sites is always high and thus the crossing molecules are always un-

der high pressure by the molecular attraction forces of the void boundaries trying to close 

the void. A segmental jump of the highest loaded crossing unit will unload this unit but 

increases the load on the adjacent crossing units causing the next one to be high loaded. 

The segmental jumps cause a decrease of the void volume and length and thus also a de-

crease of the number of jumping elements. This causes a process of decreasing sites by the 

decreasing void volume and stress decrease in the visco-elastic material surrounding the 

voids while the driving force remains high until the end, explaining that there only is a 

forward (and thus no backwards) reaction at nucleation.   

 

6. Derivation of the TTT-diagram  

It is standard practice to plot the rates of diffusive transformation in the form of time-

temperature-transformation (TTT) diagrams, often called “C-curves” 

 
Figure 6. Reduced TTT-diagram based on data of Fig.3  

  

According to eq.(30) is the product N after time 1t : 

1 1log( ) log( ) log( ) log( )N N t N t       

                  2

19.07 (1.27 ) / (0.0116 ) log( )T T t           (31) 

At the maximal rate, the nose of the C-curve, T  0.108, giving:   

1log( ) 3.17 log( )N t                                              (32) 

1t  is the time to produce the relative amount max/N N  at the maximal rate: 1 1 /t N N , 

providing lines of e.g. 1%, 5%, 50 % etc. of transformed material.   

In the same way is for time 2t  at an other temperature shift T  to get the same amount N:  
2

2log( ) 9.07 (1.27 ) / (0.0116 ) log( )N T T t        (33) 

Subtraction of eq.(33) from eq.(32) gives: 
2

2 1log( ) log( ) log( ) 5.9 (1.27 ) / (0.0116 )t t t T T         (34) 
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This represents the reduced curve of the TTT-diagram given in fig.6. The curve is upside 

down with respect to the usually given diagrams because the temperature T is on the verti-

cal axis and not as here the undercooling step mT T T   . 

 

7. Some remarks regarding the practical meaning of nucleation.  
The formation of new phases is the result of a process of nucleation and therefore is a 

widely spread phenomenon in both nature and technology. Condensation and evaporation, 

crystal growth, electro deposition, melt crystallization, growth of thin films for microelec-

tronics, volcano eruption, rain making and formation of e.g. glassy regions, vacancy clus-

ters and particulate matter in space are only a few examples of nucleation processes. In 

practice, heterogeneous nucleation is normally involved, providing oriented and easily 

crystal growth at solidification or at phase change at surfaces as grain boundaries in solids.  

Although a distinction is made between diffusive and displacive transformations as 

possible mechanisms of phase change, the nucleation equation also can be applied for the 

displacive mode being the reaction at the highest speed and driving force. 

For practical steering of wanted results of these processes, explanation by theory is 

necessary. An example of application of the theory is the in section 6 given construction of 

the TTT-diagram, giving the necessary information on e.g. the speed of quenching or the 

way of ageing to obtain a wanted result. It is not necessary to measure all points of that 

diagram to obtain the parameters of the equation and the equation can be applied in differ-

ent circumstances to predict and explain behaviour. The in Section 5 derived equation de-

termines a single elementary process. For more complicated behaviour is, according to the 

equilibrium method of [7], description of real behaviour possible by parallel acting ele-

mentary processes. This provides consistent information, better than a kinetic equation 

with changing parameters.  

 

8. Conclusions  

The classical nucleation theory is shown to be questionable e.g. by the apparent infinite 

energy and infinite fluctuation dimensions as equilibrium requirement.  

Because embryo volume- and surface formation is identically coupled, the defined 

classical surface free energy and volume free energy must have the same temperature de-

pendence and the assumed temperature independent surface energy can not exist.  

 It is shown by the general derivation of sequential growth increase that this free energy 

distinction is superfluous and the surface energy term thus should be omitted. This is con-

firmed in Section 4.2 by the proof that the separate influence of surface energy in the form 

of surface stresses to explain heterogeneous nucleation is not needed because the assumed 

equilibrium of surface stresses has to be replaced by equilibrium of rates, thus by continui-

ty conditions, to explain heterogeneous nucleation. These continuity conditions are auto-

matically fulfilled by the derivative of the volume in the sequential growth rate equation.  

Based on sequential growth conditions, the theoretical derivation of the equilibrium 

concentration of the embryos depending on size is given.  

It is shown in Appendix B that every function can be represented by the power law 

equation. The power is identical to the slope of the double log-plot of the power equation 

and is identical to the activation volume parameter of the exact kinetics equation. It there-

fore is possible to compare the different empirical rate equations to get information on the 

form of the activation volume parameter.  

 In Appendix C, based on diffusion tests, the theoretical explanation is given of the dif-

ferent empirical equations by their different activation volume parameters, based on the 
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derivation of the empirical power law equation in Appendix B. Herewith the special form 

of the activation volume term of the driving force of nucleation is found as applied in Sec-

tion 5.   

It is shown in Section 5, that the special expression of the activation volume of the 

basic rate equation explains the data and nucleation behaviour as well for homogeneous as 

for  heterogeneous nucleation. As discussed in Section 6, this rate equation shows the well 

known increase of the rate at the increase of undercooling up to a maximum value and then 

a decrease of the rate at larger undercooling steps giving thus a theoretical equation and 

explanation of the C-shape of the time-temperature-transformation diagrams (TTT-

diagrams). 

It thus is shown that nucleation follows the reaction rate equation of structural change. 

For the common case of high internal stresses, e.g. due to quenching, the equation can be 

given in stresses, determinable from measurements of the rate behaviour. It is important to 

know that the same applies for glass transition as shown in [6] 

 

Appendix A 

Basic equation of structural change 

In general the reaction rate equation for structural change can be [7]:  

/ 2sinh( / ( ))a ad dt B f A kT       (A1) 

Where exp( / )tB E kT  . This can be expressed in the concentration term:  

a a 1N A /      (A2)  

where  is the jump distance of the activated unit; aA , the cross-section of that unit;  

1  the distance between the activated sites and aN , the number of these sites per unit area. 

Then 1/a tN N   is the number of activated elements per unit volume. The work of the 

stress af  on the activation unit is: a af A  .  

The equivalent work by the part v  of the mean macro stress  that acts at the site is v  

times the unit area thus is:  

1 1v a a aN f A         or:   /a a v af A N   . (A3)  

Also the chemical work, expressed as an equivalent driving stress, can be added as stress to 

the real external stress. Eq.(A1) thus becomes: 

1 1( / ) / ( / ) 2sinh( / ( ))a a a a v ad N A dt B N A N kT           (A4)  

For constant aA  at nucleation, eq.(A4) is, when 'T  :   

/ 2sinh( '/ ( )) exp( '/ ( ))t v t vdN dt B N Nk B N Nk         (A5)  

for high stresses. This structural change equation may show a long delay time and thus is 

able to explain transient nucleation. It also is able to explain the delay time and logarithmic 

time behaviour [7] of glass relaxation. Because of limited number of free spaces in solids, 

where molecules may jump in at diffusion, the zero order reaction occurs. The same situa-

tion follows from a high “reactant” concentration, causing the pre-exponential value of tN  

to be constant in eq.(A5).  
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Appendix B 

Derivation of the power law.  

Any function ( )f x  always can be written in a reduced variable 0/x x   

1 0( ) ( / )f x f x x    

and can be given in the power of a function:  

 
1/

1 0 1 0( ) ( / )  ( / )
n

n
f x f x x f x x  

 
 

and expanded into the row:  

0( ) ( )f x f x   
2

0 0
0 0

( ). .'( ) ''( ) .......
1! 2!

x x x x
f x f x

 
   

giving:  

   
1/ 1/ 10

1 1 1

0 0

1 . .( ) (1) (1) '(1) ..... (1)

n n

n nx x x
f x f f f f

x n x

   
      
   

      

when:    
1/ 1/ 1

1 1 1(1) (1) '(1) /
n n

f f f n


    or:    1 1'(1) / (1)n f f ,  

where: 1 1 0 0'(1) ( / ) / ( / )f f x x x x        for 0x x       and 1 0(1) ( )f f x .  

Thus:  0

0

.( ) ( )

n

x
f x f x

x

 
  

 
     with   01

1 0

'( )'(1)

(1) ( )

f xf
n

f f x
     

It is seen from this derivation of the power law, using only the first 2 expanded terms, that 

the equation only can be applied in a limited range of x around 0x .  

 

Appendix C 

Estimation of the activation volume parameter 

Because diffusion is involved, the activation energy of processes as creep, damage, 

self-diffusion and growth are related and correlate e.g. with the melting temperature and 

measurements of the dislocation mobility, by stress   pulses, may provide information on 

the kinetic parameters of transformations. The possible empirical equations of [8] are:  

The power law equation:  

0 0( / )mv v     (C1)   

where v  is the dislocation velocity and   the applied stress.  

The nucleation equation, based on the classical nucleation model:  

1 exp( / )v C D    ( 0/
0 0( / )

D
v

  )  (C2)  

This eq.(C2) of point defect drag mechanism in LiF is given in Fig.6 applying here for 

high stress nucleation of mobile segments by overcoming peaks of the potential energy 

field.  
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The exact theoretical equation can be given in the form:  

2 22 sinh( ) exp( )v C C                               ( 0
0 0( / )v

  ) (C3)   

for the applied higher stresses. eq.(C3) is given in fig.8 for Ni. 

The parts between the parentheses are the power law approximations of the given equa-

tions, following from Appendix B. In a limited high stress range, fitting is possible accord-

ing to all 3 equations (C1) to (C3) at the same time, as is done for Ge in [8]. An extended 

measured stress range is necessary to see which formula applies.  

 The power m of eq.(C1) can be found from the slope of the double log-plot, fig.7 (of Fe-

Si), and for the other two  equations in fig.6 and fig.8, D and   follow from a semi-log-

plot.  

  
Fig. 7. Dislocation velocity      Fig. 8. Dislocation velocity in Fe-Si, eq.(C1)  

           in Ni, eq.(C3) 

 

According to the double log-plot of the power law approximations of these equations is:  

                0 0/m D              (C4)  

giving information on the form of the parameter  of the applying exact equation, Eq.(C3). 

When over a long range of stresses, eq.(C2) applies and the semi log-plot of log( )v against 

1/  shows a constant slope: - D, then the parameter  of the exact equation is according 

to: 0 0/D  , equal to 2
0/D  .  This parameter will be shown below to be right for 

the nucleation mechanism. The semi log-plot of the exact equation, eq.(C3) now is for nu-

cleation:  
2

2 2 0ln( ) ln( ) ln( ) /v C C D                (C5)  

for high stresses. Because the dislocation mobility tests are done with stress pulses, long 

enough to get steady state velocities the applied stress   is equal to the initial applied 

stress 0   and eq.(C5) becomes equal to eq.(C2) which thus is the equation of the collec-

tion of all different pulse tests with different values of 0 . The value 2
0/D   becomes 

2
0 0 0/ /D D    in the positive  -direction. Because 2

0 0/ ( ) (1/ )     , this is an 

negative slope in the (1/ )-direction. Eq.(C5) shows that for stress relaxation (one 0  in 

one test) there will be a straight-line on the ln(v)  -   plot but not on the ln( )v  - 1/  - 

plot, as is verified by experimental data of [8].  
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The power law behaviour, eq.(C1), when applying over a long range of stresses, also 

represents a mechanism with a special property of the activation volume parameter . The 

constant slope n of the double log-plot of eq.(C1) is equal to 0  The mechanism with 

this property of  is found in many materials as in BCC, FCC and HPC metals and non-

metallic crystals and also in e.g. concrete and wood. This property of  causes the time-

stress equivalence and because normally  also is independent of the temperature, the 

time-temperature equivalence also applies. With the special value of 0/m  , eq.(C3)  

becomes:  

2 2 0ln( ) ln( ) ln( ) /v C C m        (C6)  

and the semi-log-plot of ln(v)  against  ( 0 ) now shows a slope of 0/m   which is 

different for every pulse test value of  ( 0 ) in the plot, thus is a curved line, as e.g. 

given in [8]. It follows also from eq.(C6) for the double log-plot: 

0ln( ) / ln( ) ln( ) / /d v d d v d m        .  (C7)  

This is equal to: 0 0/m m    for the 0 -pulse tests collection of the dislocation mobili-

ty tests, where each applied stress   is equal to the initial applied stress 0 . Only in this 

case the constant value n of the slope of the double log-plot may exist in a wide stress 

range, as given in [8]. At the same time, for the stress-relaxation tests, (which is one test 

with one 0  over many decades of time) at high stress, the straight semi log-plot: ln( )v  - 

  - plot applies according to the exact eq.(C6), thus is fully explained here by the type of 

loading.  

There also exists a mechanism with a constant value of  in eq.(C3). This does not only 

apply for polycrystalline material like Ni, but also occurs in other materials and in wood, 

for instance in a species with a wavy grain. 

The explanation of the form of the activation volume parameter   follows from Ap-

pendix C: / '/NkT Nk    . Thus the power law here applies when the concentra-

tion of sites N is proportional to the initial stress 0 : 0 0'/ '/ ' /Nk c k c        . 

For nucleation N is proportional to 2
0  (for high stresses), as applied in eq.(30).   
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